Identifying Driver's Cognitive Distraction Using Inductive Logic Programming

Fumio Mizoguchi† ‡, Hayato Ohwada†, Hiroyuki Nishiyama†, Akira Yoshizawa *, Hirotoshi Iwasaki *

Faculty of Sci. and Tech., Tokyo University of Science†
WisdomTex Co. Ltd. ‡
Denso IT Laboratory*

Background

- Next Generation Services in Car
 - Telematics
 - Entune, G-BOOK
 - Services in Cooperation with Smartphone

Toyota Entune

Denso NaviCon

Purpose of the Study

- New research topic to Traffic problem
- To detect distracted driving
 Inside car services causes distracted
 driving, cell phone, media players, navigation

Real time driving experiments

Cognitive Qualitative SIMulation on Eye Movement

- Using QSIM: Qualitative SIMulation
- Analyzing real data
 - Eye Movement
 - Driving Data

Real street experiments: Limits of subjects numbers

Driving Simulator to Collect Experimental Data

Experimental Setting

Participants:

19drivers (female 9 male 10)

Age: 30 ~50s Experience: 5 ~ over20 years

hours/week:_ 1~30 hours

Two 15min. same route drives for each participants

- 1. First Driving (without mental load)
 - normal driving
- 2. Second Driving (with mental load)
 - mental arithmetic task (load driving) every 8 seconds

Data Collection

1.Eye movement

using EMR-9

Position of Eye move(X,Y)

2. Driving data

using vehicle sensors from Simulator

- accelerator depression data (0~100)
- steering data $(-1 \sim +1)$
- •braking signal(0 or 1)
- velocity data (km)
- front vehicle (0 or 1)

Obtain 60 data points per second

Data Transformation for ILP learning

Transform <u>raw data</u> at <u>constant time</u> intervals to qualitative data

(About 900 sec: (5 sec) 54,000 times)

From Eye movement data

On move direction and distance

- 1. the counts of saccade and fixation
- 2. total eye movement distance

From driving data

- 1. Data average and standard deviation
- 2. Add difference attribute values

Example of qualitative data

bigHigh
bigMiddle
bigLow
average
smallLow
smallMiddle

smallHigh

Add new information on before event (interval)

Background knowledge

Types	Predicates
Qualitative value	accele(+ID, #Val), brake(+ID, #Val), velocity(+ID, #Val), steering(+ID, #Val), gazeX(+ID, #Val),gazeY(+ID, #Val), front(+ID, #Val), sacCount(+ID, #Val), fixCount(+ID, #Val), eyeMove(+ID, #Val)
Qualitative state difference	accele diff(+ID,#Val), brake diff(+ID,#Val), velocity diff(+ID,#Val), steering diff(+ID,,#Val), gazeX diff(+ID,#Val), gazeY diff(+ID,#Val), front diff(+ID,#Time,#Val), sacCount_diff(+ID, #Val), fixCount_diff(+ID, #Val), moveCount_diff(+ID, #Val)
Information on before event	Before_event(+ID, -ID)

Mode declaration: + input type - output type # constant

Positive/Negative Examples

Positive examples: mental arithmetic task (more half time of driving)

Negative examples: Nomal driving (only first driving data)

Data example: F01 (femal, age30, experimences10years, 5hours/week)

State	Time(sec.)	The number observation of raw data	The number of examples	Positive examples	Negative examples
Normal	917	55020	183	0	183
Arithmetic	934	56220	186	119	0

Obtained ILP Rules

Rule generation by Parallel ILP engine

[Nishiyama & Owada 2015, Owada & Mizoguchi 1999]

- 2sets 6CPU computers
 (Intel(R) Core(TM) i7-5820K CPU @ 3.30GHz 16.0GB 64bit)
- 6sets 4CPU computers
 (Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz 8.0GB 64bit)

Total time: 4615 sec. (1.28 hours)

Rule generations: 22sets

Examples of Rule (driving data F01)

<u>Driving and Eye movement Rules ({ (include)positive:negative})</u>

```
{23,4} class(A) :- steering(A, straight), eyeMove(A, average), before_event(A, B), front(B, notClear).
{21,3} class(A) :- front(A, notClear), before_event(A, B), steering(B, straight), eyeMove(A, average).
```

Each rule means this driver follows a car in front, going straight and eye-movement is average Checked normal driving video

In normal driving: eye-movement is almost high moving (No mental arithmetic task)

'Average eye-movement' means this driver don't gather front information

Not fixation, not saccade

Conclusions

- *Using Driving Simulator, we have obtained cognitive distraction with inductive rules.
- *Parallel ILP engine is useful for the identification of distraction.
- *The rules verify distraction in terms of eyemovement data, sac and fix.