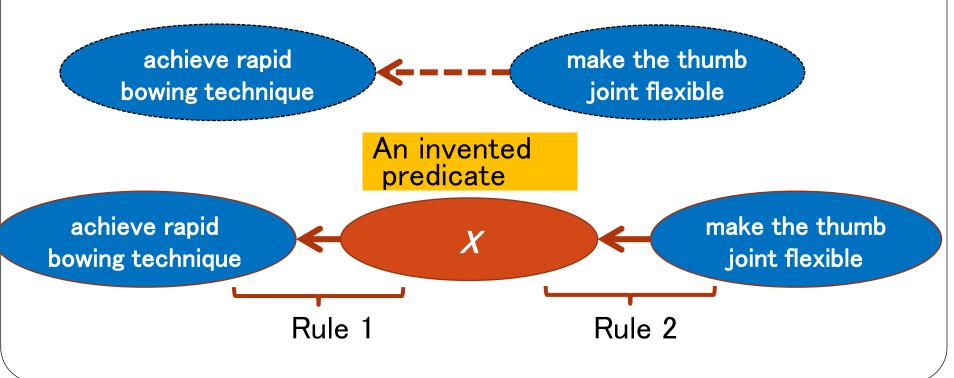
On Skill Acquisition Support by Analogical Rule Abduction

Koichi FurukawaKeio UniversityKeita KinjoOkinawa International UniversityTomonobu OzakiNihon UniversityMakoto HaraguchiHokkaido University

The Aim of the Research

- To explain why the following discoveries work well.
- 1. Discovery of rapid bowing technique by bow holding with flexible thumb joint
- 2. Discovery of spiccato technique by ring finger bow holding
 - https://www.youtube.com/watch?v=cJWjYLG3B7o&feature=related
- 3. Discovery of one-bow staccato technique by stiff bow holding
 - https://www.youtube.com/watch?v=YOz6XK7jv3Y
- Explaining effectiveness of metaphorical expression for fortepiano playing

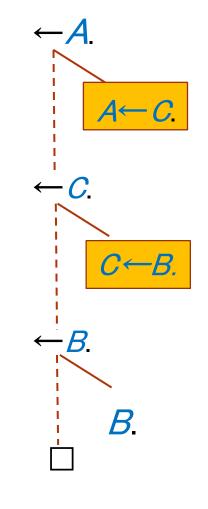
Personal evidence (My performance)


https://www.youtube.com/watch?v=r1qoyQIYt6s https://www.youtube.com/watch?v=8zAaAQeJuaw https://www.youtube.com/watch?v=bRTtfVMV3_4

Abduction in Skill Science

- Surprising observation: Knack
 - Rapid bowing technique is achieved by bow holding with flexible thumb joint.
- Proof: Explanation
 - Bow holding with flexible thumb joint causes rapid bowing technique. (by some unknown reason)
- Abduction: Hypotheses generation to explain the knack

An Example of Rule Abduction


- A given knack: "*Rapid bowing technique is achieved by bow holding with flexible thumb joint.*"
- Hidden rules to be discovered: "if you make the thumb joint flexible, then you can make all fingers flexible." and "if you make all fingers flexible, then you can achieve rapid bowing technique."

Discovering Hidden Secret by Rule Abduction

- To abduce a hidden reason for the knack "*you should do an action B in order to achieve a task A*", we assert *B* and vainly try to prove the goal *A*.
- The abduction finds missing links connecting the goal *A* and the fact *B*.
- Therefore the abduction should abduce a connection rule, not a fact.
- Meta-level abduction [Inoue 09] can abduce rules.

Inoue, K., Furukawa, K., Kobayashi, I., and Nabeshima, H.: Discovering Rules by Meta-level Abduction, Proc. 19th International Conference on Inductive Logic Programming (ILP 2009), Leuven, Belgium,pp.49-64(2009)

Meta-Level Representation based on Causality Relation

- We represent the object level causalities in terms of first order logic (FOL) clauses representing causalities.
- The direct or indirect causality: "caused(X,Y)"

caused(achieve_rapid_bowing_technique, make_the_thumb_joint_flexible)

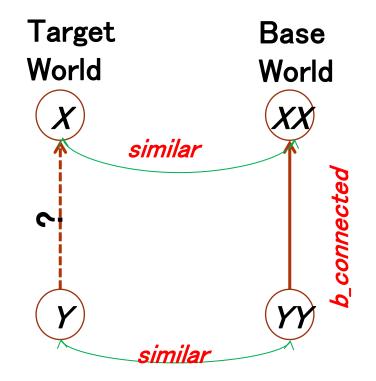
- Direct causality: "connected(X,Y)" connected(make_all_fingers_flexible, make_the_thumb_joint_flexible)
- The definition of "caused":

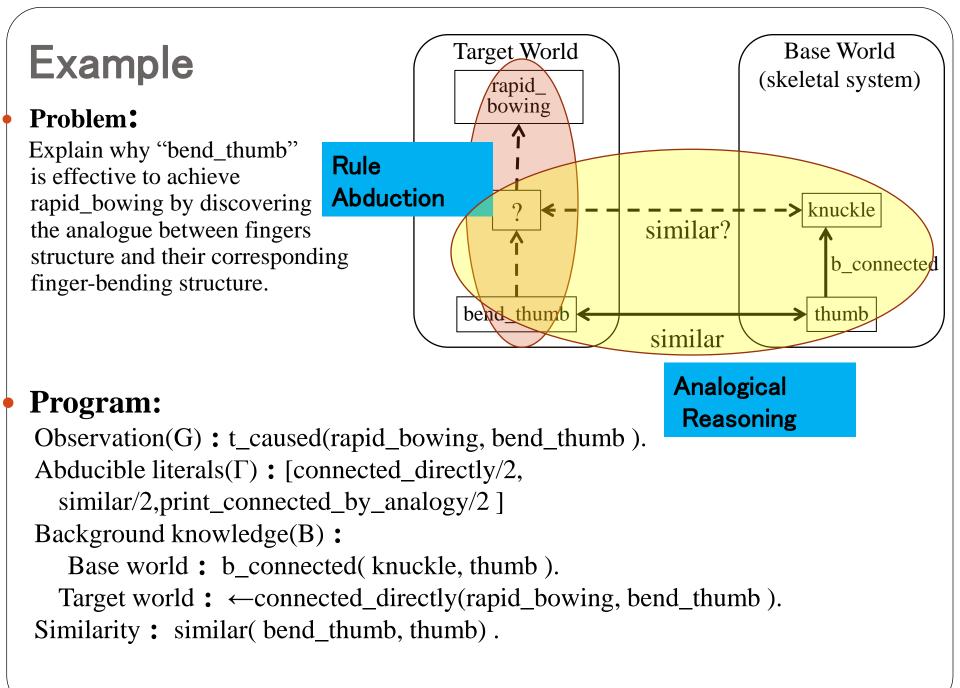
 $caused(X,Y) \leftarrow connected(X,Y).$ $caused(X,Y) \leftarrow connected(X,Z) \land caused(Z,Y).$

Why Analogy Needed?

- The rule abduction can abduce missing links but cannot give interpretation to the abduced rules.
- In case of predicate invention, the meaning (*make_all_fingers_flexible*) of the invented predicate (*X*) is not given by abduction.
- Analogical abduction makes it possible to provide understandable interpretation to the introduced predicates/rules.

Analogical Inference

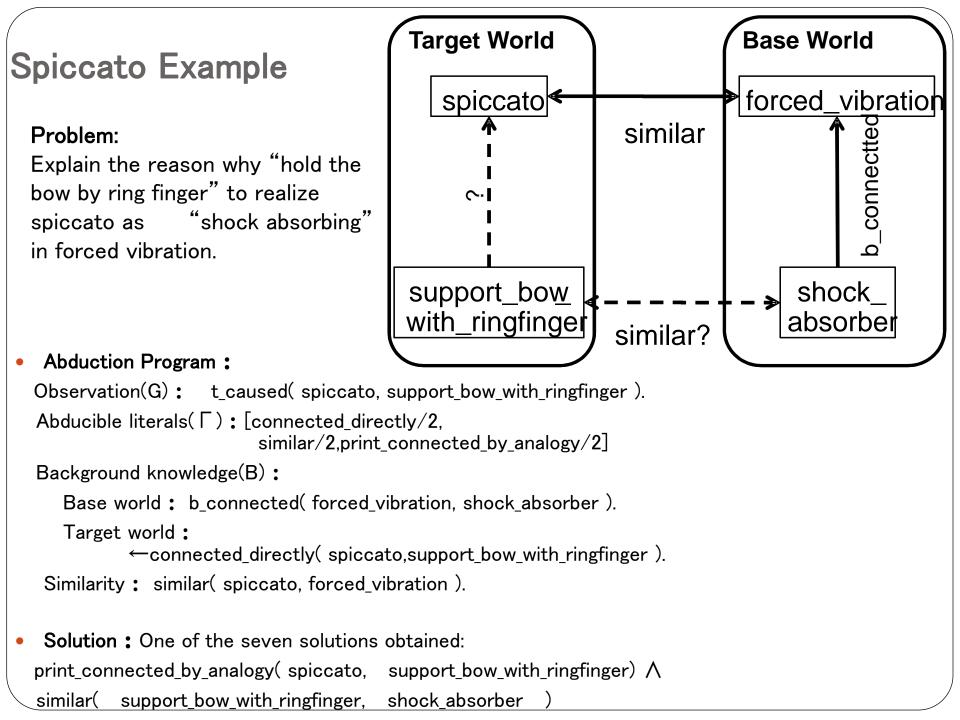

- *"b_connected"* : connectedness in a base world
- "*t_connected*" : connectedness in a target world
- We define b_caused and t_caused as follows: t_caused(X,Y) ← t_connected(X,Y). t_caused(X,Y) ← t_connected(X,Z) ∧ t_caused(Z,Y). b_caused(X,Y) ← b_connected(X,Y). b_caused(X,Y) ← b_connected(X,Z) ∧ b_caused(Z,Y).
- We represent similarity relationship between a target world atom *X* and a base world atom *XX* by a predicate "*similar(X,XX)*".


Analogical Axiom

Analogy Axiom

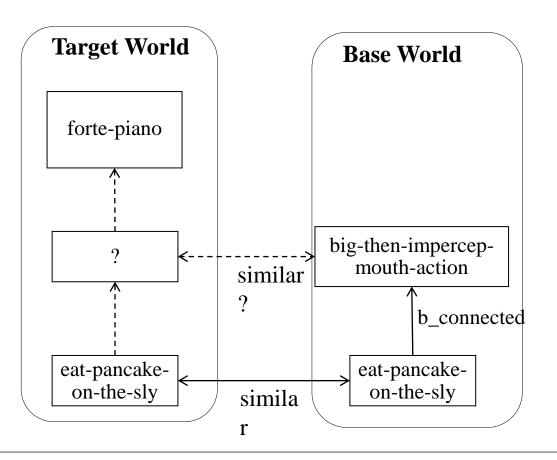
connected $_by_analogy(X,Y) \leftarrow$ $b_connected(XX,YY),$ similar(X,XX),similar(Y,YY).

• IF *b_connected(XX,YY*) holds at the base world and *similar(X,XX*) and *similar(Y,YY)*, then a causality relation *connected_by_analogy(X,Y)* holds at the target world.



The meaning of the solution

• One of the six solutions obtained under the inference depth upper limit as 10, hypotheses length limit as 4.


connected_directly(rapid_bowing, _X) \land similar(_X, knuckle) \land print_connected_by_analogy(_X, bend_thumb)

- The invented predicated _X fills the gap between "rapid_bowing" and "bend_thumb" which corresponds to "knuckle" in the finger structure.
- This suggests that the variable _X represents "knuckle fingers bending".

Mataphorical expression Example

Mataphorical expression of "eating pancake on the sly" to achieve forte-piano.

Abduction and Analogy as Inference Scheme

- Abduction and analogy are both treated by meta level representation framework.
- They are both kinds of inference in human thinking.
- Our approach suggests human cognitive reasoning behavior can be handled by the meta level reasoning framework.
- Other cognitive activities such persuasive arguments by metaphorical and/or onomatopoeia explanations can be formalized similarly.

Summary

- Rule abduction is essential in skill discovery application.
- Analogical abduction is easily achieved by meta level representation of causality and similarity in the same framework.
- The analogy axiom plays a key role in analogical reasoning.
- Our research suggests a promising approach of cognitive reasoning in skill science.