
Set-up slide

Please, do not read yet.

1 / 31

Declarative Modeling for Query Mining
using Logic Programming

Sergey Paramonov, Matthijs van Leeuwen, Marc Denecker and
Luc De Raedt

KU Leuven

August 22, 2015

2 / 31

Outline

Introduction
Declarative data mining
The core problem of frequent query mining
Motivation for declarative methods

Modeling
Logic programming
Second-Order Model
First-Order Model

Experiments
Subsumption testing
Graph mining

Lesson learned
Historical analogy: SQL
Conclusions

3 / 31

Outline

Introduction
Declarative data mining
The core problem of frequent query mining
Motivation for declarative methods

Modeling
Logic programming
Second-Order Model
First-Order Model

Experiments
Subsumption testing
Graph mining

Lesson learned
Historical analogy: SQL
Conclusions

4 / 31

Main ideas of declarative data mining

I Formalize data mining tasks in logic

I Investigate current modeling possibilities and limits

I Evaluate these models in the current logic programming solvers
(ASP)

I Propose/implement solver extensions

I Long-term: create efficient declarative mining languages

5 / 31

Frequent query mining problem

Given:
I a relational database D,

I the entity of interest determining the key predicate,

I a frequency threshold t,

I a language bias L of logical queries of the form
key(X)← b1, ..., bn defining key/1 (bi’s are atoms).

Find: all queries q ∈ L s.t. freq(q,D) ≥ t, where

freq(q,D) = |{θ | D ∪ q |= key(X)θ}|

6 / 31

Query mining example

I Relational graph database D =

{edge(g1, e1, e2), edge(g1, e2, e3), edge(g1, e1, e3),
edge(g2, e1, e2), edge(g2, e2, e3), edge(g2, e1, e3), . . . }

I Frequency threshold t = 2,

I The following query has frequency of 2, therefore it is frequent

key(K)← edge(K,B,C), edge(K,C,D), edge(K,B,D)

7 / 31

Important observations

I Data mining problems are essentially constraint satisfaction
problems and optimization

I Data is often structured and relational

I Many of the interesting problems are NP-complete (and higher),
perfect fit for SAT/ASP

I Many new problems are mathematical variations of known
problems

I Use of solvers is very common in statistical learning
(convex optimization for SVM etc)

8 / 31

Why don’t we just write some C-code?

Key issues U4

I unreliable: written by one or two researchers who are typically
not professional developers

I unreadable: written a week or two before deadline

I unprovable: written without SQA

I unextendable: does not satisfy the elaboration tolerance
principle

9 / 31

Example: unreadable mining software

10 / 31

Core principles

I Data Mining = Modeling + Solving (De Raedt 2015)

I Focus on general principles and modeling rather than specific
implementations

I Model reflects the mathematical properties of the task

I Itemsets mining has been investigated in CP framework (Guns,
Nijssen, and De Raedt 2013; Negrevergne et al. 2013)

I Here we work with structured pattern mining

11 / 31

Outline

Introduction
Declarative data mining
The core problem of frequent query mining
Motivation for declarative methods

Modeling
Logic programming
Second-Order Model
First-Order Model

Experiments
Subsumption testing
Graph mining

Lesson learned
Historical analogy: SQL
Conclusions

12 / 31

KR and Logic Programming (De Cat et al. 2014)

Map Coloring: find a map coloring function such that. . .

vocabulary V{
type Colo r
type Area
Border (Area , Area)
C o l o r i n g (Area) : Co lo r

}
theory T :V{

Border (a1, a2) → C o l o r i n g (a1) 6= C o l o r i n g (a2) .
}
s t r u c t u r e S :V{

Area ={ Belgium ; Hol l and ; Germany ; Luxembourg ; A u s t r i a ; Swiss ; F r an ce
}

Colo r ={ Blue ; Red ; Yellow ; Green }
Border ={(Belgium , Hol l and) ; (Belgium , Germany) ;

(Belgium , Luxembourg) ; (Belgium , F ra n ce) ; (Hol land , Germany) ;
. . . }

}

13 / 31

Graph Mining: Homomorphism existence
Find: subgraphs (indicated in red) of graph q (called bottom) that can
be homomorphically mapped to graph g (fixed constant here)
Given:
bedge(x, y), blabel(x) : l – edges and labels of q
edge(g, x, y), label(g, x) : l – edges and labels of g
Model exists iff θ :: node 7→ node exists

inq(x) ∧ inq(y) ∧ bedge(x, y) =⇒ edge(g, θ(x), θ(y)).
inq(x) ∧ blabel(x) = l =⇒ label(g, θ(x)) = l.

inq(x) ∧ inq(y) ∧ x 6= y =⇒ θ(x) 6= θ(y).

14 / 31

Second-Order Model: Multiple Graphs

Multiple Graph Homomorphism Check:

homo(g)⇐⇒ ∃θ :
(
bedge(x, y) ∧ inq(x) ∧ inq(y) =⇒ edge(g, θ(x), θ(y)).
inq(x) ∧ blabel(x) = y =⇒ label(g, θ(x)) = y.

x 6= y =⇒ θ(x) 6= θ(y)
)
.

Frequency Constraint: #{graph : homo(graph)} ≥ t.
15 / 31

Proposal: Second-Order Extension

ψ(x̄), φi(x̄) – FOL formulae;
f (x̄) – a function;
◦ – logical connector ({∧,∨,←→,→, . . . });
Q, Qi – sequences of quantifiers.

Q : ψ(x̄) ◦ [¬]∃Hf
(
Q1 : φ1(x̄1, f (ȳ1)).
. . .

Qn : φn(x̄n, f (ȳn)).)

16 / 31

First-Order Model: Multiple Graphs

Multiple Graph Homomorphism Check:

homo(g) ∧ inq(x) ∧ inq(y) ∧ bedge(x, y) =⇒ edge(g, θ(g, x), θ(g, y)).
homo(g) ∧ inq(x)⇐⇒ ∃y : y = θ(g, x).
homo(g) ∧ inq(x) ∧ inq(y) ∧ x 6= y =⇒ θ(g, x) 6= θ(g, y).
homo(g) ∧ inq(x) ∧ blabel(x) = l =⇒ label(g, θ(g, x)) = l.

Frequency Constraint: #{graph : homo(graph)} ≥ t.
17 / 31

Other computational challenges

I Canonicity – CoNP check

I Frequency anti-monotonicity – pruning the space of models

I Parallel search over homomorphisms and patterns – optimization
and beyond

I Language bias construction – often domain specific

18 / 31

We do not solve a problem but a class of problems
Elaboration principle:

A small change in the problem should lead to a small change in the
model

Connectedness constraint

{path(X,Y)← inq(X) ∧ inq(Y) ∧ bedge(X,Y).
path(X,Y)← ∃Z : inq(Z) ∧ path(X,Z) ∧ bedge(Z,Y) ∧ inq(Y).
path(Y,X)← path(X,Y).}
inq(X) ∧ inq(Y) ∧ X 6= Y =⇒ path(X,Y).

Objective function: max-size constraint

|{X : inq(X)}| 7→ max

If then constraint

bedge(a, b) =⇒ bedge(a′, b′)

19 / 31

So is it a kind of magic?

You might wonder why isn’t everyone using it all the time

20 / 31

Outline

Introduction
Declarative data mining
The core problem of frequent query mining
Motivation for declarative methods

Modeling
Logic programming
Second-Order Model
First-Order Model

Experiments
Subsumption testing
Graph mining

Lesson learned
Historical analogy: SQL
Conclusions

21 / 31

Subsumption testing – sanity check
Comparison: declarative model (∼ 10 lines of ASP) with a
specialized Prolog θ-subsumption engine Subsumer (Santos and
Muggleton 2010)

Single θ-subsumption test. IDP (red) and Subsumer (blue)
(avg time per hypothesis in seconds; the phase transition data)

●
●

●

●

●

●

●

●

●

●

●

● ● ●
● ● ● ●

●

●
● ●

●

●

●
●

●
● ● ● ● ● ● ● ● ● ●

●

●
● ●

●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●25

50

75

100

150

200

250

300

350

Dataset

H
yp

ot
he

si
s

ru
nt

im
e

in
 s

ec
on

ds

22 / 31

Graph dataset description

Known datasets in the graph mining community.
Vertices, edges and labels are averaged per graph.

Name Graphs Vertices Edges Labels
Mutagenesis 230 26 27 9
Enzymes 600 33 124 3
Toxinology 417 26 26 22
Bloodbarr 413 21 23 9
NCTRER 232 19 20 9
Yoshida 265 20 23 9

23 / 31

Graph Mining: runtime comparison (in s)
(a) IDP FOL Model (Blue) (b) IDP Second-Order (Red)

Frequent query enumeration; Yoshida dataset; y-axis runtime in seconds, x-axis i-th query.

●
●

●

●

● ●
● ●

●

●

●
● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

0

100

200

300

0 10 20 30 40 50
i−th query

R
un

tim
e

in
 s

ec
on

ds

24 / 31

An open problem: structured pattern sets
No one knows how to search for patterns and homomorphisms
efficiently at the same time, exploiting enumeration properties

Maximal size top-1 graph patterns. Runtime distribution.

●

●

●

●

●

●●

0

10000

20000

30000

40000

50000

bloodbarr mutagenesis nctrer toxinology yoshida

R
un

tim
e

in
 s

ec
on

ds

There is no system yet that can solve the whole class in a declarative
and principled way. 25 / 31

Experimental summary

I Declarative models typically perform slower than specialized
algorithms (by a factor or in an order of magnitude)

I Language extension is necessary for efficient computations

I Pattern sets, i.e. mining with optimization, requires new
formalism and solving techniques

I Demonstrated performance allows declarative models to be used
as prototypes

26 / 31

Outline

Introduction
Declarative data mining
The core problem of frequent query mining
Motivation for declarative methods

Modeling
Logic programming
Second-Order Model
First-Order Model

Experiments
Subsumption testing
Graph mining

Lesson learned
Historical analogy: SQL
Conclusions

27 / 31

Historical analogy: SQL

I A long way in solver development e.g. SQL does not scale
without indices, optimizers that involved three decades of
research and IO-optimized data structures

I Modeling language: modification and extensions are necessary

I Application-driven: many particular features of the language
reflect real life problems

I Family of language: SQL, NoSQL, newSQL etc

I Community: industry, developers and users participate in the
evolution of the language

28 / 31

Conclusions

I ASP (namely, IDP) can be applied to ILP tasks, such as query
mining

I Experimental evidence shows that these models can serve as
prototypes for new declarative mining languages

I Proposed a language extension and experimentally showed its
effectiveness

I Provided a new computational and feature developing challenge
for ASP solver community

I Demonstrated benefits of declarative models in mining tasks

29 / 31

References

Broes De Cat et al. “Predicate Logic as a Modelling Language: The
IDP System”. In: CoRR abs/1401.6312 (2014).

Luc De Raedt. “Languages for Learning and Mining”. In: AAAI.
2015, Austin, Texas, USA. 2015, pp. 4107–4111.

Tias Guns, Siegfried Nijssen, and Luc De Raedt. “k-Pattern set mining
under constraints”. In: Knowledge and Data Engineering, IEEE
Transactions on 25.2 (2013), pp. 402–418.

Benjamin Negrevergne et al. “Dominance Programming for Itemset
Mining”. In: ICDM 13. 2013, pp. 557–566.

Jose Santos and Stephen Muggleton. “Subsumer: A Prolog
theta-subsumption engine”. In: ICLP Technical Communications.
Vol. 7. 2010, pp. 172–181.

30 / 31

Thank you for your attention

31 / 31

	Introduction
	Declarative data mining
	The core problem of frequent query mining
	Motivation for declarative methods

	Modeling
	Logic programming
	Second-Order Model
	First-Order Model

	Experiments
	Subsumption testing
	Graph mining

	Lesson learned
	Historical analogy: SQL
	Conclusions

