Please, do not read yet.

Declarative Modeling for Query Mining using Logic Programming

Sergey Paramonov, Matthijs van Leeuwen, Marc Denecker and Luc De Raedt

KU Leuven

August 22, 2015

Outline

Introduction

Declarative data mining The core problem of frequent query mining Motivation for declarative methods

Modeling

Logic programming Second-Order Model First-Order Model

Experiments

Subsumption testing Graph mining

Lesson learned Historical analogy: SQL Conclusions

Outline

Introduction

Declarative data mining The core problem of frequent query mining Motivation for declarative methods

Modeling

Logic programming Second-Order Model First-Order Model

Experiments

Subsumption testing Graph mining

Lesson learned Historical analogy: SQL Conclusions

Main ideas of declarative data mining

- ► Formalize data mining tasks in logic
- ► Investigate current modeling possibilities and limits
- Evaluate these models in the current logic programming solvers (ASP)
- Propose/implement solver extensions
- ► Long-term: create efficient declarative mining languages

Frequent query mining problem

Given:

- ► a relational database *D*,
- ► the entity of interest determining the *key* predicate,
- ► a frequency threshold *t*,
- a language bias L of logical queries of the form key(X) ← b₁,..., b_n defining key/1 (b_i's are atoms).

Find: all queries $q \in \mathcal{L}$ s.t. $freq(q, D) \ge t$, where

$$freq(q, D) = |\{\theta \mid D \cup q \models key(X)\theta\}|$$

• Relational graph database D =

{
$$edge(g_1, e_1, e_2), edge(g_1, e_2, e_3), edge(g_1, e_1, e_3), edge(g_2, e_1, e_2), edge(g_2, e_2, e_3), edge(g_2, e_1, e_3), \dots$$
 }

- Frequency threshold t = 2,
- ► The following query has frequency of 2, therefore it is frequent

 $key(K) \leftarrow edge(K, B, C), edge(K, C, D), edge(K, B, D)$

Important observations

- Data mining problems are essentially constraint satisfaction problems and optimization
- Data is often structured and relational
- Many of the interesting problems are NP-complete (and higher), perfect fit for SAT/ASP
- Many new problems are mathematical variations of known problems
- Use of solvers is very common in statistical learning (convex optimization for SVM etc)

Key issues U⁴

- unreliable: written by one or two researchers who are typically not professional developers
- unreadable: written a week or two before deadline
- ► unprovable: written without SQA
- unextendable: does not satisfy the *elaboration tolerance* principle

Example: unreadable mining software

```
void TRSACT shrink ( ARY *T, OUEUE *jump, long *p ){
 int ii. i. t. tt. v. vv:
 QUEUE INT *jt, *jtt, *jq=jump->q, *jqq=jump->q+jump->end+1;
 long *pp=&p[jump->end+1], *q=&p[jump->end*2+2], *qq=&p[jump->end*2+2+T->num*2];
 QUEUE *Q = T ->h;
 for ( t=0,jtt=jqq ; t<T->num ; t++ ){
   ii = Q[t].q[0];
   if ( pp[ii] == -1 ){ *jtt = ii; jtt++; }
   aa[t*2] = pp[ii];
   aa[t*2+1] = 0:
   pp[ii] = t;
 3
 for ( j=1 ; jtt>jqq ; j++ ){
   for ( jt=jq ; jtt>jqq ; ){
     jtt--;
     if ( *itt == jump->end ) goto END2;
     t = pp[*itt];
     pp[*jtt] = -1;
     v = -1:
      do{
       tt = aa[t*2];
       if ( v != qq[t*2+1] ){
         v = qq[t*2+1];
         vv = t;
         if ( tt<0 ) goto END2:
         if ( gg[tt*2+1] != v ) goto END1:
       ii = Q[t].q[i];
       if ( p[ii] == -1 ){ *it = ii; it++; }
       q[t*2] = p[ii]:
       p[ii] = t;
       q[t*2+1] = vv;
       END1:;
       t = tt:
```

- ► Data Mining = Modeling + Solving (De Raedt 2015)
- Focus on general principles and modeling rather than specific implementations
- Model reflects the mathematical properties of the task
- ► Itemsets mining has been investigated in CP framework (Guns, Nijssen, and De Raedt 2013; Negrevergne et al. 2013)
- ► Here we work with structured pattern mining

Outline

Introduction

Declarative data mining The core problem of frequent query mining Motivation for declarative methods

Modeling

Logic programming Second-Order Model First-Order Model

Experiments Subsumption tes Graph mining

Lesson learned Historical analogy: SQL Conclusions

KR and Logic Programming (De Cat et al. 2014)

Map Coloring: find a map coloring function such that...

```
vocabulary V{
  type Color
  type Area
  Border (Area, Area)
  Coloring (Area): Color
theory T:V{
  Border(a_1, a_2) \rightarrow \text{Coloring}(a_1) \neq \text{Coloring}(a_2).
structure S:V{
  Area={ Belgium ; Holland ; Germany ; Luxembourg ; Austria ; Swiss ; France
  Color={Blue; Red; Yellow; Green }
  Border = { (Belgium, Holland); (Belgium, Germany);
    (Belgium, Luxembourg); (Belgium, France); (Holland, Germany);
  ...}
```

Graph Mining: Homomorphism existence

Find: subgraphs (indicated in red) of graph q (called bottom) that can be homomorphically mapped to graph g (fixed constant here) Given:

bedge(x, y), blabel(x) : l - edges and labels of qedge(g, x, y), label(g, x) : l - edges and labels of gModel exists iff $\theta :: node \mapsto node$ exists

 $\begin{array}{l} inq(x) \wedge inq(y) \wedge bedge(x,y) \implies edge(g,\theta(x),\theta(y)).\\ inq(x) \wedge blabel(x) = l \implies label(g,\theta(x)) = l.\\ inq(x) \wedge inq(y) \wedge x \neq y \implies \theta(x) \neq \theta(y). \end{array}$

Second-Order Model: Multiple Graphs

Multiple Graph Homomorphism Check:

$$\begin{aligned} homo(g) &\iff \exists \theta : (bedge(x, y) \land inq(x) \land inq(y) \implies edge(g, \theta(x), \theta(y)).\\ inq(x) \land blabel(x) = y \implies label(g, \theta(x)) = y.\\ x \neq y \implies \theta(x) \neq \theta(y)). \end{aligned}$$

Frequency Constraint: $\#\{graph : homo(graph)\} \ge t$.

15/31

 $\psi(\bar{x}), \phi_i(\bar{x}) - \text{FOL formulae};$ $f(\bar{x}) - \text{a function};$ $\circ - \text{logical connector } (\{\land, \lor, \longleftrightarrow, \rightarrow, \dots\});$ $Q, Q_i - \text{sequences of quantifiers.}$

$$Q: \psi(\bar{x}) \circ [\neg] \exists_{H} f (Q_{1}: \phi_{1}(\bar{x}_{1}, f(\bar{y}_{1}))). \\ \dots \\ Q_{n}: \phi_{n}(\bar{x}_{n}, f(\bar{y}_{n})). \\)$$

First-Order Model: Multiple Graphs

Multiple Graph Homomorphism Check:

 $\begin{aligned} &homo(g) \wedge inq(x) \wedge inq(y) \wedge bedge(x,y) \Longrightarrow edge(g,\theta(g,x),\theta(g,y)). \\ &homo(g) \wedge inq(x) \iff \exists y : y = \theta(g,x). \\ &homo(g) \wedge inq(x) \wedge inq(y) \wedge x \neq y \Longrightarrow \theta(g,x) \neq \theta(g,y). \\ &homo(g) \wedge inq(x) \wedge blabel(x) = l \Longrightarrow label(g,\theta(g,x)) = l. \end{aligned}$ Frequency Constraint: $\#\{graph : homo(graph)\} \ge t.$

- Canonicity CoNP check
- ► Frequency anti-monotonicity pruning the space of models
- Parallel search over homomorphisms and patterns optimization and beyond
- ► Language bias construction often domain specific

We do not solve a problem but a class of problems

Elaboration principle:

A small change in the problem should lead to a small change in the model

Connectedness constraint

$$\begin{aligned} \{path(X, Y) \leftarrow inq(X) \land inq(Y) \land bedge(X, Y). \\ path(X, Y) \leftarrow \exists Z : inq(Z) \land path(X, Z) \land bedge(Z, Y) \land inq(Y). \\ path(Y, X) \leftarrow path(X, Y). \\ inq(X) \land inq(Y) \land X \neq Y \implies path(X, Y). \end{aligned}$$

Objective function: max-size constraint

$$|\{X: inq(X)\}| \mapsto \max$$

If then constraint

$$bedge(a,b) \implies bedge(a',b')$$

You might wonder why isn't everyone using it all the time

Outline

Introduction

Declarative data mining The core problem of frequent query mining Motivation for declarative methods

Modeling

Logic programming Second-Order Model First-Order Model

Experiments Subsumption testing Graph mining

Lesson learned Historical analogy: SQL Conclusions

Subsumption testing – sanity check

Comparison: declarative model (~ 10 lines of ASP) with a specialized Prolog θ -subsumption engine Subsumer (Santos and Muggleton 2010)

Single θ -subsumption test. IDP (red) and Subsumer (blue) (avg time per hypothesis in seconds; the phase transition data)

Known datasets in the graph mining community. Vertices, edges and labels are averaged per graph.

Name	Graphs	Vertices	Edges	Labels
Mutagenesis	230	26	27	9
Enzymes	600	33	124	3
Toxinology	417	26	26	22
Bloodbarr	413	21	23	9
NCTRER	232	19	20	9
Yoshida	265	20	23	9

Graph Mining: runtime comparison (in s)

Frequent query enumeration; Yoshida dataset; y-axis runtime in seconds, x-axis i-th query.

An open problem: structured pattern sets

No one knows how to search for patterns and homomorphisms efficiently at the same time, exploiting enumeration properties

Maximal size top-1 graph patterns. Runtime distribution.

There is no system yet that can solve the whole class in a declarative and principled way. 25/31

- ► Declarative models typically perform slower than specialized algorithms (by a factor or in an order of magnitude)
- ► Language extension is necessary for efficient computations
- Pattern sets, i.e. mining with optimization, requires new formalism and solving techniques
- Demonstrated performance allows declarative models to be used as prototypes

Outline

Introduction

Declarative data mining The core problem of frequent query mining Motivation for declarative methods

Modeling

Logic programming Second-Order Model First-Order Model

Experiments

Subsumption testing Graph mining

Lesson learned Historical analogy: SQL Conclusions

- A long way in solver development e.g. SQL does not scale without indices, optimizers that involved three decades of research and IO-optimized data structures
- ► Modeling language: modification and extensions are necessary
- Application-driven: many particular features of the language reflect real life problems
- ► Family of language: SQL, NoSQL, newSQL etc
- Community: industry, developers and users participate in the evolution of the language

- ASP (namely, IDP) can be applied to ILP tasks, such as query mining
- Experimental evidence shows that these models can serve as prototypes for new declarative mining languages
- Proposed a language extension and experimentally showed its effectiveness
- Provided a new computational and feature developing challenge for ASP solver community
- Demonstrated benefits of declarative models in mining tasks

References

- Broes De Cat et al. "Predicate Logic as a Modelling Language: The IDP System". In: *CoRR* abs/1401.6312 (2014).
- Luc De Raedt. "Languages for Learning and Mining". In: AAAI. 2015, Austin, Texas, USA. 2015, pp. 4107–4111.
- Tias Guns, Siegfried Nijssen, and Luc De Raedt. "k-Pattern set mining under constraints". In: *Knowledge and Data Engineering, IEEE Transactions on* 25.2 (2013), pp. 402–418.
- Benjamin Negrevergne et al. "Dominance Programming for Itemset Mining". In: *ICDM 13*. 2013, pp. 557–566.
- Jose Santos and Stephen Muggleton. "Subsumer: A Prolog theta-subsumption engine". In: *ICLP Technical Communications*. Vol. 7. 2010, pp. 172–181.

Thank you for your attention