Ontology Learning from Interpretations in Lightweight Description Logics

Szymon Klarman¹ and Katarina Britz²

Department of Computer Science, Brunel University London, UK 2 CSIR Centre for Artificial Intelligence Research, South Africa

> August 22, 2015 ILP-15, Kyoto

Ontology: a formal conceptualization of a domain of interest.

Mother \equiv Woman $\sqcap \exists$ hasChild. \top

Father \equiv Man $\sqcap \exists$ hasChild. \top

Father_of_boy \equiv Father $\sqcap \exists$ hasChild.Man

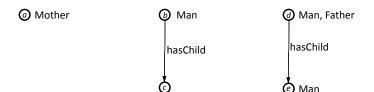
Ontology: a formal conceptualization of a domain of interest.

Mother \equiv Woman $\sqcap \exists$ hasChild. \top

Father \equiv Man $\sqcap \exists$ hasChild. \top

Father_of_boy \equiv Father $\sqcap \exists$ hasChild.Man

Instance data + *inference*:



Ontology: a formal conceptualization of a domain of interest.

Mother \equiv Woman $\sqcap \exists$ hasChild. \top

Father \equiv Man $\sqcap \exists$ hasChild. \top

Father_of_boy \equiv Father $\sqcap \exists$ hasChild.Man

Instance data + *inference*:

Ontology: a formal conceptualization of a domain of interest.

Mother \equiv Woman $\sqcap \exists$ hasChild. \top

Father \equiv Man $\sqcap \exists$ has Child. \top

Father_of_boy \equiv Father $\sqcap \exists$ hasChild.Man

Models: datasets satisfying all axioms in the ontology:

Ontologies

Ontology: a formal conceptualization of a domain of interest.

Mother \equiv Woman $\sqcap \exists$ hasChild. \top

Father \equiv Man $\sqcap \exists$ hasChild. \top

Father_of_boy ≡ Father □ ∃hasChild.Man

Models: datasets satisfying all axioms in the ontology:

Can we learn ontologies from models without supervision?

Motivation

• ontologies and the Semantic Web technologies have become a

- prominent knowledge management paradigm
- the data is abundant and good ontologies are ever more important
- traditional knowledge acquisition bottleneck (building ontologies ex-ante) turns into *knowledge re-engineering bottleneck*:

How to elicit ontological commitments implicitly present on the data-level?

Description Logics: syntax

The \mathcal{EL} family of *Description Logics* (underpinning OWL 2 EL) used for modeling large taxonomies (e.g., SNOMED).

Language consists of (atomic) concepts (e.g., Man), roles (e.g., hasChild), and constructors:

$$C,D ::= \underbrace{\top \mid A \mid C \sqcap D}_{\mathcal{L}^{\sqcap}} \mid \exists r.C$$

An ontology (TBox) is a set of formulas of type: $C \sqsubseteq D$, where:

 \mathcal{EL} : C and D in \mathcal{EL}

 \mathcal{EL}^{rhs} : $C \text{ in } \mathcal{L}^{\sqcap} \text{ and } D \text{ in } \mathcal{EL}$

 \mathcal{EL}^{lhs} : C in \mathcal{EL} and D in \mathcal{L}^{\sqcap}

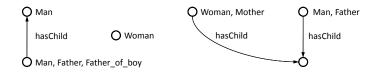
Example:

 \mathcal{EL}^{rhs} : Father_of_boy \sqsubseteq Man $\sqcap \exists$ has Child. Man \mathcal{EL}^{lhs} : Man $\sqcap \exists$ has Child. Man \sqsubseteq Father_of_boy

Description Logics: semantics

An *interpretation* $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ consists of:

- $\Delta^{\mathcal{I}}$ non-empty domain of individuals,
- interpretation function ·^I, which encodes a labelled graph, e.g.:



An interpretation \mathcal{I} is a *model* of an ontology *iff* $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ for every $C \subseteq D$ in the ontology.

Note: An ontology has infinitely many (possibly) infinite models.

Learning model

Is it possible to correctly identify an ontology in an unsupervised manner from a finitely presentable sample of models?

Teacher: provides a finite *learning set*, e.g.:

Learning model

Is it possible to correctly identify an ontology in an unsupervised manner from a finitely presentable sample of models?

Teacher: provides a finite learning set, e.g.:

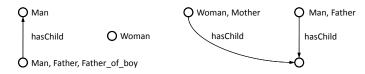
Learner: guesses the *correct ontology*, e.g.:

```
Mother ≡ Woman □ ∃hasChild. □
Father ≡ Man □ ∃hasChild. □
Father □ ∃hasChild. Man
```

Learning model

Is it possible to correctly identify an ontology in an unsupervised manner from a finitely presentable sample of models?

Teacher: provides a finite learning set, e.g.:



Learner: guesses the *correct ontology*, e.g.:

```
      Mother
      ≡
      Woman □ ∃hasChild. □

      Father
      ≡
      Man □ ∃hasChild. □

      Father □ ∃hasChild.Man
      □
```

Admissibility condition: the learning set is reach enough to refute every wrong guess (e.g., there exists a man who is not a woman).

Results

- **1** There does not exist a finite learning set for \mathcal{EL} .
- **2** There always exist finite learning sets for \mathcal{EL}^{rhs} and \mathcal{EL}^{lhs} .
 - The learner can succeed easily *using an equivalence oracle*.
 - In case of \mathcal{EL}^{rhs} , the learner can succeed *without the oracle*.

Impossibility result for \mathcal{EL}

 \mathcal{EL} : \exists hasUncle. \top \sqsubseteq \exists hasParent. \exists hasSibling.Man

Theorem: There does not exist a finite learning set for \mathcal{EL} .

For every axiom:

$$\underline{\exists r \dots \exists r}$$
 $\top \sqsubseteq \underline{\exists r \dots \exists r . \exists r}$ \top

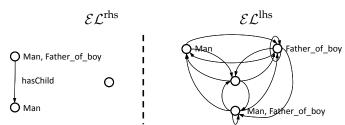
the learning set must contain a finite chain of individuals of length exactly n + 1, as depicted below:

$$\underbrace{\hspace{1cm} \stackrel{r}{\longrightarrow} \bullet \ldots \bullet \stackrel{r}{\longrightarrow} \bullet}_{r+1}$$

Learning in $\mathcal{EL}^{rhs}/\mathcal{EL}^{lhs}$ with an equivalence oracle

 \mathcal{EL}^{rhs} : Father_of_boy \sqsubseteq Man $\sqcap \exists$ hasChild.Man \mathcal{EL}^{lhs} : Man $\sqcap \exists$ hasChild.Man \sqsubseteq Father_of_boy

Theorem: There always exist finite learning sets for \mathcal{EL}^{rhs} and \mathcal{EL}^{lhs} (shown by an application of the type construction method.)



Learning in $\mathcal{EL}^{rhs}/\mathcal{EL}^{lhs}$ with an equivalence oracle

For every ontology of size *n*, consistent with the learning set, ask the oracle if it is correct:

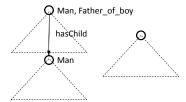
Yes: we're done.

No: increase n by 1.

Unsupervised learning in \mathcal{EL}^{rhs}

 \mathcal{EL}^{rhs} : Father_of_boy \sqsubseteq Man $\sqcap \exists$ hasChild.Man

"Good" candidate axioms can be directly extracted from the learning set in \mathcal{EL}^{rhs} .



The algorithm runs in double exponential time and can generate ontologies of double exponential size w.r.t. data (but there might exist more optimal solutions).

Note: We conjecture a similar result to hold for \mathcal{EL}^{lhs} ...

Related work

Ontology learning by query (in Angluin's framework):

Konev, B., Lutz, C., Ozaki, A., Wolter, F. Exact learning of lightweight description logic ontologies. In: *Proc. of KR-14*, 2014.

Konev, B., Ozaki, A., Wolter, F. Exact Learning Description Logic Ontologies from Data Retrieval Examples. In: *Proc. of DL-15*, 2015.

Learning DL concepts via different operators:

Cohen, W.W., Hirsh, H. Learning the classic description logic: Theoretical and experimental results.. In: *Proc. of KR-94*, 1994.

Lehmann, J., Hitzler, P. A refinement operator based learning algorithm for the \mathcal{ALC} description logic.. In: ILP, 2008.

Applications of concept analysis for enriching ontologies:

Baader, F., Ganter, B., Sertkaya, B., Sattler, U. Completing description logic knowledge bases using formal concept analysis. In: *Proc. of IJCAI-07*, 2007.

Conclusions

The presented approach offers a theoretical foundation for the problem of unsupervised ontology learning from data.

Immediate open problem:

• is unsupervised learning possible also in the case of \mathcal{EL}^{lhs} ?

Other questions:

- what other feasible conditions could be used to warrant unsupervised learnability in particular languages?
- can we define practical learning algorithms?