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Ontologies

Ontology: a formal conceptualization of a domain of interest.

Mother ≡ Woman u ∃hasChild.>
Father ≡ Man u ∃hasChild.>

Father of boy ≡ Father u ∃hasChild.Man

Instance data + inference:
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Can we learn ontologies from models without supervision?
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Motivation

• ontologies and the Semantic Web technologies have become a
prominent knowledge management paradigm

• the data is abundant and good ontologies are ever more important
• traditional knowledge acquisition bottleneck (building ontologies

ex-ante) turns into knowledge re-engineering bottleneck:

How to elicit ontological commitments implicitly present on the
data-level?
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Description Logics: syntax
The EL family of Description Logics (underpinning OWL 2 EL) used for
modeling large taxonomies (e.g., SNOMED).

Language consists of (atomic) concepts (e.g., Man), roles (e.g.,
hasChild), and constructors:

C,D ::=

EL︷ ︸︸ ︷
> | A | C uD︸ ︷︷ ︸

Lu

| ∃r.C

An ontology (TBox) is a set of formulas of type: C v D, where:

EL: C and D in EL
ELrhs: C in Lu and D in EL
ELlhs: C in EL and D in Lu

Example:

ELrhs : Father of boy v Man u ∃hasChild.Man
ELlhs : Man u ∃hasChild.Man v Father of boy
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Description Logics: semantics

An interpretation I = (∆I , ·I) consists of:
• ∆I non-empty domain of individuals,
• interpretation function ·I , which encodes a labelled graph, e.g.:

Man, Father, Father_of_boy

Man Man, FatherWoman, Mother

hasChildhasChildhasChild Woman

An interpretation I is a model of an ontology iff CI ⊆ DI for every
C v D in the ontology.

Note: An ontology has infinitely many (possibly) infinite models.
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Learning model

Is it possible to correctly identify an ontology in an unsupervised manner
from a finitely presentable sample of models?

Teacher: provides a finite learning set, e.g.:

Man, Father, Father_of_boy

Man Man, FatherWoman, Mother

hasChildhasChildhasChild Woman

Learner: guesses the correct ontology, e.g.:

Mother ≡ Woman u ∃hasChild.>
Father ≡ Man u ∃hasChild.>

Father of boy ≡ Father u ∃hasChild.Man

Admissibility condition: the learning set is reach enough to refute every
wrong guess (e.g., there exists a man who is not a woman).
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Results

1 There does not exist a finite learning set for EL.

2 There always exist finite learning sets for ELrhs and ELlhs.
• The learner can succeed easily using an equivalence oracle.
• In case of ELrhs, the learner can succeed without the oracle.
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Impossibility result for EL

EL : ∃hasUncle.> v ∃hasParent.∃hasSibling.Man

Theorem: There does not exist a finite learning set for EL.

For every axiom:

∃r. . . .∃r.︸ ︷︷ ︸
n

> v ∃r. . . .∃r.∃r.︸ ︷︷ ︸
n+1

>

the learning set must contain a finite chain of individuals of length
exactly n + 1, as depicted below:

• r−−−−→ • . . . • r−−−−→ •︸ ︷︷ ︸
n+1
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Learning in ELrhs/ELlhs with an equivalence oracle

ELrhs : Father of boy v Man u ∃hasChild.Man
ELlhs : Man u ∃hasChild.Man v Father of boy

Theorem: There always exist finite learning sets for ELrhs and ELlhs

(shown by an application of the type construction method.)

ELrhs ELlhs

Man, Father_of_boy

Man

hasChild

Man, Father_of_boy

Father_of_boyMan
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Learning in ELrhs/ELlhs with an equivalence oracle

For every ontology of size n, consistent with the learning set, ask the
oracle if it is correct:
Yes: we’re done.
No: increase n by 1.
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Unsupervised learning in ELrhs

ELrhs : Father of boy v Man u ∃hasChild.Man

“Good” candidate axioms can be directly extracted from the learning
set in ELrhs.

Man, Father_of_boy

Man

hasChild

The algorithm runs in double exponential time and can generate
ontologies of double exponential size w.r.t. data (but there might exist
more optimal solutions).

Note: We conjecture a similar result to hold for ELlhs...
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Conclusions

The presented approach offers a theoretical foundation for the
problem of unsupervised ontology learning from data.

Immediate open problem:

• is unsupervised learning possible also in the case of ELlhs?

Other questions:

• what other feasible conditions could be used to warrant
unsupervised learnability in particular languages?

• can we define practical learning algorithms?
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