CARAF: Complex Aggregates within RAndom Forests

Clément Charnay, Nicolas Lachiche, Agnès Braud

ICube, Université de Strasbourg, CNRS 300 Bd Sébastien Brant - CS 10413 F-67412 Illkirch Cedex

{charnay,nicolas.lachiche,agnes.braud}@unistra.fr

ILP 2015 Kyoto, 2015/08/22

- Relational Two-Table Setting
- 2 Background on Complex Aggregates
- 3 CARAF: Complex Aggregates within Random Forests
- Experimental Results and Conclusion

ILP'15

2 / 19

Relational Data

Relational Data

- Data represented across several tables: different kinds of objects.
- In this work, 2 tables:
 - main: objects we want to predict on,
 - secondary: objects in 1-to-many relationship with main table, composition for instance.
- Could be a star schema: one main table with several secondary tables directly related to the main.
- Task: build features of main objects using properties of secondary objects

Urban Blocks

Urban Blocks Dataset

- Urban blocks composed of several buildings.
- Learning task : predict of which kind is the urban block according to geometric properties.
- Data available from former project: 591 urban blocks from 4 areas of Strasbourg, composed of 7692 buildings.

• 6 class-problem.

Relational Two-Table Setting

Urban Blocks Example - Schema

blo	ck_	id	densit	cy convexit	y	elongatio	n	ar	ea	(class
1 0.151		L 0.986	0.986			22925		h	indiv		
2 0.192		0.832	0.832			15363		h	coll		
	3 0.204		4 0.718	0.718			17329		h	mixed	
	1 Main table - blocks										
						0N					
	building id		convexity	e	elongation a		ea	blo	ck_	id	
	1 1		1.000		0.538	16	55	5 1			
	1 2		0.798		0.736	32	23		1		
	1_3		1.000		0.668		4	1			
	2_1		0.947		0.925 2)2	2			
2_2		1.000		0.676 147		2					

Secondary table - buildings

State of the Art

Possible Approaches

- Tilde^a: logical decision tree induction, introduction of secondary objects through existential quantifier.
- RELAGGS^b: propositionalization through simple aggregation.

^aHendrik Blockeel and Luc De Raedt. "Top-Down Induction of First-Order Logical Decision Trees". In: Artif. Intell. 101.1-2 (1998), pp. 285–297. ^bM.-A. Krogel and S. Wrobel. "Facets of Aggregation Approaches to Propositionalization". In: Work-in-Progress Track at the Thirteenth International Conference on Inductive Logic Programming (ILP). 2003.

Our aim

- Introduce relevant secondary objects (like Tilde).
- Use aggregation to go further than the existential quantifier.
- \Rightarrow Complex Aggregation

Relational Two-Table Setting

2 Background on Complex Aggregates

3 CARAF: Complex Aggregates within Random Forests

4 Experimental Results and Conclusion

ILP'15

7 / 19

Complex Aggregates - Introduction

What is a Complex Aggregate

- Constructed feature of the objects of the main table.
- Aggregates the values of a feature of secondary objects that meet a certain condition.

Composition of Complex Aggregates

- Selection of secondary objects:
 - Link: Relationship between tables.
 - Filter: Conditions on secondary objects.
- Aggregation process:
 - Attribute to aggregate (not always).
 - Aggregation function.

Background on Complex Aggregates

Examples of Complex Aggregates

Examples

- Number of buildings in the block.
- Maximum area of buildings with elongation \geq 0.5.
- Average elongation of buildings with convexity < 0.9 and area ≥ 150 .

Example - Notation

avg(elongation, buildings, convexity $< 0.9 \land area \ge 150$)

Searching the Feature Space

Explosion of Search Space

- Problem: number of complex aggregates for a given problem is combinatorial, impossible to consider them all!
- Especially, the aggregation condition is a conjunction of several basic conditions.

ILP 2014

- RRHCCA¹: Random Restart Hill-Climbing of Complex Aggregates.
- In a single decision tree, find splits on complex aggregates.
- Given the aggregation process, find the best conjunction of conditions through random restart hill-climbing.

¹C. Charnay, N. Lachiche, and A. Braud. "Construction of Complex Aggregates with Random Restart Hill-Climbing". In: 24th International Conference on Inductive Logic Programming (ILP'14). 2014.

Clément Charnay (ICube, UdS)

Relational Two-Table Setting

2 Background on Complex Aggregates

3 CARAF: Complex Aggregates within Random Forests

4 Experimental Results and Conclusion

ILP'15

11 / 19

Random Forests

CARAF: Complex Aggregates within Random Forests

Random Forests for Complex Aggregates

Motivation

- Large Feature Space. ($\approx F \cdot A \cdot N^A$)
- Complex aggregates are specific, overfitting with a single decision tree.
- Relax the optimization method to search through the feature space.

Existing Methods

- Tilde extended to both complex aggregates and Random Forests, FORF^a.
- However, memory problems when language bias allows big conjunction for selection condition.
- Feature sampling is uniform \rightarrow may not create enough diversity.

^aAnneleen Van Assche et al. "First order random forests: Learning relational classifiers with complex aggregates". In: *Machine Learning* 64.1-3 (2006), pp. 149–182.

Clément Charnay (ICube, UdS)

Random Forests in CARAF

Complex Aggregate Feature Sampling

- Bootstrapping and recombination are classic.²
- Structural feature sampling: keep square root of aggregation processes and half of the attributes for conditions. (sampled feature space size \approx square root of the original feature space size)

Attr Func	Area	Elong	Conv
Average	x		
Min			
Max			
Std Dev		х	
Sum	x		

Cond	Area	Elong	Conv
	х	х	

²Leo Breiman. "Random Forests". In: *Machine Learning* 45.1 (2001), pp. 5–32. Clément Charnay (ICube, UdS) CARAF ILP'15 14 / 19

Hill-Climbing of Aggregation Conditions

Hill-Climbing Strategies

- RRHCCA (ILP 2014): given the aggregation process, find the best conjunction by testing a neighborhood of refinements at each step.
- Random: given the aggregation process, try one random neighbor at each step.
- Global: try one random neighbor condition at each step, on every aggregation process at hand.

Refinements

From original condition area \geq 150, we can refine to:

- Empty condition.
- area \geq 150 \wedge elongation < 0.6
- area \geq 120
- area \geq 180

- Relational Two-Table Setting
- 2 Background on Complex Aggregates
- 3 CARAF: Complex Aggregates within Random Forests
- 4 Experimental Results and Conclusion

Out-of-bag Accuracy Results

Out-of-bag Accuracy

- For each training instance, use sub-forest that did not see the instance at training to classify.
- Used to compare Random Forests.
- 33 trees in each forest.

Dataset	RELAGGS	FORF	RRHCCA	Random	Global
Auslan	94.19%	ERR	96.53%	95.91%	94.66%
Diterpenes	89.09%	90.49%	<u>92.95%</u>	85.06%	<u>93.35%</u>
Jp-Vowels	93.78%	94.86%	95.41%	97.30%	97.03%
Musk1	80.43%	78.26%	<u>89.13%</u>	84.78%	80.43%
Musk2	76.47%	75.49%	81.37%	85.29%	82.35%
Opt-digits	22.37%	76.57%	<u>95.94%</u>	<u>94.60%</u>	<u>92.77%</u>
Urban	83.42%	75.81%	<u>84.94%</u>	<u>83.76%</u>	<u>84.60%</u>
			7 - 6	6 - 5	6.5 - 6

Experimental Results and Conclusion

10-fold Cross Validation Results

Dataset	Muta	Urban
RELAGGS-1	89.40%	74.86%
RELAGGS-100	90.26%	84.55%
RRHCCA-1	84.86%	74.69%
RRHCCA-100	91.33%	87.48%
Random-1	87.67%	75.55%
Random-100	92.22%	87.28%
Global-1	87.82%	74.60%
Global-100	91.96%	87.68%

Conclusion and Future Work

Conclusion

- Random Forests improve over Decision Trees with Complex Aggregates.
- Our Hill-Climbing algorithms perform better than RELAGGS and FORF.
- Faster hill-climbing algorithms do not yield loss of accuracy.

Future Work

- Do Feature Selection with Random Forests: find most relevant families of aggregates.
- Handle Nested Relationships, especially complex aggregates as aggregated feature.