Imperial College

25 years of ILP

Stephen Muggleton
Department of Computing
Imperial College, London

June, 2010




ILP biography
Infancy (1991-1994) - prodigious beginnings
e Formal basis - eg inverse resolution, saturation
e Initial implementations - eg FOIL, Golem, Clint, Linus
e Early applications - eg nite element mesh, proteins

Childhood (1995-2001) - logical development
e Rigorous theoretical foundations
e Advanced implementations, eg Progol, Aleph, Tilde
e Signi cant applications - eg mutagenesis

Teenage years (2002-2010) - indecision

e Probabilistic logic representations, eg SLPs, DTLPs
e PLL implementations - eg Prism, ProbLog
e Larger signi cant applications - eg robot scientist




Now and Next

Young adulthood (2011-2015) - action and dynamism

e Metalogical and functional extensions
e Learning actions and strategies

e Hard applications - eg systems biology

Middle adulthood (2015-2020) - socialisation
e Integration of learning, perception and action
e Learning social skills

e Hard applications - eg synthetic ecology




Human vs Statistical Learning

UK EPSRC Priority 2016-2021 - Human-like Computing

Characteristic

Human

Statistical

Examples

per concept

Few (=~ 1)
[Tenenbaum, 2011]

Many (> 10K)

Concepts

Many (> 10K)
[Brown et al, 2008]

Few (=~ 1)

Background

knowledge

Large
[Brown, 2000]

Small

Structure

Modular, re-useable
[Omrod et al, 2004]

Monolithic




Trends

Endogenous
» Probabilistic ILP (aging)
» Declarative learning/mining

» Higher-order, meta-intepretative, predicate invention

Exogenous
» Lifted modeling (graphical models and beyond)
» Semantic web, description logics & co (decline?)

> Deep learning



Deep Learning Inspirations

Tricks for predicate invention
» unlabeled data, autoencoders, denoisers, ...

» mainly in the presence of big data

Revival of NN /Logic techniques in the deep context
» KBANN, C-ILP, ...

Lifted neural networks
» Logical prescriptions for unfolding ground networks

» Co-evolution of weights



Trends at ILP 2011-2015

@ Strong subfields

@ Propositionalization

@ Graph Mining

© Feature construction

© Hybrid architectures: SVM, Neural Nets
@ Growing number of applications

@ Robotics

Q Actions

@ Reinforcement learning
@ Bioinformatics

@ Cognition

@ Ongoing work on logical foundations
@ Growing work on description logics

@ Probabilistic Logic Learning/Statistical Relational Learning &
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The future of ILP

@ Stronger connection to the Semantic Web

@ Exploiting Linked Open Data
@ Probabilistic Logic Learning/Statistical Relational Learning

e tractable languages
e tractable inference (lifted)
e scaling

@ Declarative learning: Constraints, ASP
@ Applications to Big Data/Scaling: clusters, GPUs

i«.j
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ILP"13

Real hard progress in bridging
numeric and symbolic approaches:
— ProbLog is now used in real applications
— NELL has 50 million beliefs
— CP-Lint applies sophisticated search

works

— Relational Dependency Networks +

Boosting is the relationa
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Progress in Logic:

 Abduction of Rules (Meta-Rules)

— Probabilities
— Predicate Invention
— Recursion N e

* Learning with
Negation



Looking Ahead

Big Data?
Propositionalization
Parallelism

Applications




ILP 2014: Nancy, France

Jesse Davis and Jan Ramon: PC chairs

jesse.davis@cs.kuleuven.be
KU Leuven




Trends and Outlook

I
5 Looking back

* Applications play a central role: Biology, medicine,
robotics, natural language, vision, etc.

* Different learning settings: Combinations of logic
and probability, graphs, time and dynamics, etc.
o Going forward
* Learn from very few examples and lots of knowledge

Automate ILP setup: Discover background
<nowledge in one domain and reuse it to solve other
oroblems

* Learn from both discrete and continuous data
Continue to focus on theory and applications
Make svstems and data publiclv available




25th INTERNATIONAL
CONFERENCE ON INDUCTIVE
LOGIC PROGRAMMING
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Trends

Declarative learning: Some declarativeness
everywhere in the forms of constraints,
graphs, actions, kernels, ontologies, etc.

Modeling rather than simple learning: Biology,
robotics, data, natural language, cognition, vision

New applications: logic, proof, strategy, etc.

Diversity of approaches and topics: Continue to
focus on theory and applications

_earning with meta-theories: Meta-interpretive
earning, meta-level abduction, etc.

_earning from time-series data
_earning from both discrete and continuous data




Outlooks

Learning from few examples and

commonsense gV
Learning from state transitions with lots of

fluents

ntegration of inference with high-level
ogical representation and recognition with

ow-level numerical data
Deep relational learning—How they look like?

General intelligence and learning




New horizon
Taisuke Sato / AIST, SONAR

* Recent technologies (word2vector, relation extraction, FreeBase, ")
provide millions of propositions learned from big data that ILP can ex
ploit:

big data sta ata ILP & knowledge

* Propositions such as friend(X,Y), buys(X,Y,Z) can be non-traditional:
* X,Y,Z are random vectors of (latent) features representing entities

* Relations are matrixes and their truth value is computed like:
friend(e1,e2) = o((friendM(e1) « e2)) € [0,1]
* Inferences are made logically or possibly by matrix (tensor) operations

computation inference, learning

machine code VS proposition

bits features, relations



