Imperial College London

25 years of ILP

Stephen Muggleton Department of Computing Imperial College, London June, 2010

ILP biography

Infancy (1991-1994) - prodigious beginnings

- Formal basis eg inverse resolution, saturation
- Initial implementations eg FOIL, Golem, Clint, Linus
- Early applications eg nite element mesh, proteins

Childhood (1995-2001) - logical development

- Rigorous theoretical foundations
- Advanced implementations, eg Progol, Aleph, Tilde
- Signi cant applications eg mutagenesis

Teenage years (2002-2010) - indecision

- Probabilistic logic representations, eg SLPs, DTLPs
- PLL implementations eg Prism, ProbLog
- Larger signi cant applications eg robot scientist

Now and Next

Young adulthood (2011-2015) - action and dynamism

- Metalogical and functional extensions
- Learning actions and strategies
- Hard applications eg systems biology

Middle adulthood (2015-2020) - socialisation

- Integration of learning, perception and action
- Learning social skills
- Hard applications eg synthetic ecology

Human vs Statistical Learning

UK EPSRC Priority 2016-2021 - Human-like Computing

Characteristic	Human	Statistical
Examples	Few (≈ 1)	Many ($\geq 10K$)
per concept	[Tenenbaum, 2011]	
Concepts	Many ($\geq 10K$)	Few (≈ 1)
	[Brown et al, 2008]	
Background	Large	Small
knowledge	[Brown, 2000]	
Structure	Modular, re-useable	Monolithic
	[Omrod et al, 2004]	

Trends

Endogenous

- Probabilistic ILP (aging)
- Declarative learning/mining
- Higher-order, meta-intepretative, predicate invention

Exogenous

- Lifted modeling (graphical models and beyond)
- Semantic web, description logics & co (decline?)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Deep learning

Deep Learning Inspirations

Tricks for predicate invention

- unlabeled data, autoencoders, denoisers, …
- mainly in the presence of big data

Revival of NN/Logic techniques in the deep context

► KBANN, C-ILP, ...

Lifted neural networks

Logical prescriptions for unfolding ground networks

▲□▶ ▲□▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ④ ● ●

Co-evolution of weights

Trends at ILP 2011-2015

- Strong subfields
 - Propositionalization
 - Graph Mining
 - Feature construction
 - Hybrid architectures: SVM, Neural Nets
- Growing number of applications
 - Robotics
 - 2 Actions
 - Reinforcement learning
 - Bioinformatics
 - Cognition
- Ongoing work on logical foundations
- Growing work on description logics
- Probabilistic Logic Learning/Statistical Relational Learning

The future of ILP

- Stronger connection to the Semantic Web
- Exploiting Linked Open Data
- Probabilistic Logic Learning/Statistical Relational Learning
 - tractable languages
 - tractable inference (lifted)
 - scaling
- Declarative learning: Constraints, ASP
- Applications to Big Data/Scaling: clusters, GPUs

Digits and Letters

Gerson Zaverucha Vítor Santos Costa

ILP'13

Real **hard** progress in bridging numeric and symbolic approaches:

- ProbLog is now used in real applications
- NELL has 50 million beliefs
- CP-Lint applies sophisticated search works
- Relational Dependency Networks + Boosting is the relational algorithm to

beat

Progress in Logic:

- Abduction of Rules (Meta-Rules)
 - Probabilities
 - Predicate Invention
 - Recursion
- Learning with
 Negation

Looking Ahead

- Big Data?
- Propositionalization
- Parallelism
- Applications

ILP 2014: Nancy, France

Jesse Davis and Jan Ramon: PC chairs jesse.davis@cs.kuleuven.be KU Leuven

Trends and Outlook

Looking back

- Applications play a central role: Biology, medicine, robotics, natural language, vision, etc.
- Different learning settings: Combinations of logic and probability, graphs, time and dynamics, etc.

Going forward

- Learn from very few examples and lots of knowledge
- Automate ILP setup: Discover background knowledge in one domain and reuse it to solve other problems
- Learn from both discrete and continuous data
- Continue to focus on theory and applications
- Make systems and data publicly available

ILP 2015

PANEL FROM VIEWPOINT OF ILP 2015

Katsumi Inoue, NII Hayato Ohwada, Tokyo University of Science Akihiro Yamamoto, Kyoto University

Trends

- Declarative learning: Some declarativeness everywhere in the forms of constraints, graphs, actions, kernels, ontologies, etc.
- Modeling rather than simple learning: Biology, robotics, data, natural language, cognition, vision
- New applications: logic, proof, strategy, etc.
- Diversity of approaches and topics: Continue to focus on theory and applications
- Learning with meta-theories: Meta-interpretive learning, meta-level abduction, etc.
- Learning from time-series data
- Learning from both discrete and continuous data

Outlooks

 Learning from few examples and commonsense

- Learning from state transitions with lots of fluents
- Integration of inference with high-level logical representation and recognition with low-level numerical data
- Deep relational learning—How they look like?
- General intelligence and learning

New horizon

Taisuke Sato / AIST, SONAR

 Recent technologies (word2vector, relation extraction, FreeBase,…) provide millions of propositions learned from big data that ILP can ex ploit:

big data 🚠 propositions 🚠 ILP 🚠 knowledge

- Propositions such as friend(X,Y), buys(X,Y,Z) can be non-traditional:
 - X,Y,Z are random vectors of (latent) features representing entities
 - Relations are matrixes and their truth value is computed like: friend(e1,e2) = σ((friendM(e1) • e2)) ∈ [0,1]
 - Inferences are made logically or possibly by matrix (tensor) operations

