Applications of Probabilistic Logic Programming

Luc De Raedt ILP 2015, Kyoto

MACHINE LEARNING

SHRDLU [Winograd]

- Artificial Intelligence
 - the endeavor to make intelligent machines.
- Early days 1970s-1980s
 - focus on high-level reasoning
 - model driven
- limitations
 - assuming perfect knowledge about the world
 - assumed a deterministic world
 - no learning (from data)

SHRDLU

Person: Pick up a big red block. diagram adapted from Winograd, Understanding Natural Language (1972) Computer: OK.

Person: Grasp the pyramid.

Computer: I don't understand which pyramid you mean.

Person (changing their mind): Find a block which is taller than the one you are holding and put it into the box.

Computer: By "it", I assume you mean the block which is taller than the one I am holding.

Computer: OK.

Person: What does the box contain?

Computer: The blue pyramid and the blue block.

Person: What is the pyramid supported by?

Computer: The box.

Person: How many blocks are not in the box?

Computer: Four of them.

Person: Is at least one of them narrower than the one which I told you to pick up?

Computer: Yes, the red cube.

etc.

Historical perspective

- Next phase in AI 90s-00s
 - focus on processing low-level sensory information
 - probabilistic graphical models, neural networks, svms in vision, robotics, natural language processing ...
 - data-driven uses data to learn
 - coping with *uncertainty*
 - limitations
 - lack of high-level reasoning
 - does not deal with objects and relations
 - has a hard time to deal with knowledge

Now is the time

- to integrate these two views
 - the technology is getting ready
 - the applications demand it
 - and it is happening
- I believe the key challenge for Artificial Intelligence is to bridge the gap between low-level perception and high-level reasoning

Why is this relevant ?

Bring me the tea pot and the sugar

The Robot Grasping Task


```
Object:pan
Part:handle
Task:P&P on table
```


Object:bottle Part:top Task:pass

Object:bottle Part:middle Task:Pass

Object:cup Part:top Task:Pour out

The Robot Grasping Task


```
Object:pan
Part:handle
Task:P&P on table
```


Object:bottle Part:top Task:pass

Object:bottle Part:middle Task:Pass

Object:cup Part:top Task:Pour out

This requires dealing with

- Structured environments
 - objects, and
 - relationships amongst them
- and possibly
- Statistical Relational Learning using background knowledge
- cope with uncertainty
- learn from data

Probabilistic Logic Programming

Distribution Semantics [Sato, ICLP 95]: probabilistic choices + logic program → distribution over possible worlds

OVERVIEW paper [Kimmig, De Raedt, MLJ 15]

Extensions of basic PLP

Overview

- Extensions motivated by applications
 - Distributional clauses continuous distributions for use in robotics
 - Dynamics for use in robotics and planning
 - Decision Theoretic ProbLog for biological network inference
 - Probabilistic rule learning use with NELL
 - Semiring labels kernels
- Focus on ProbLog / kLog line of research at KU Leuven

PART I: Recap PLP

ProbLog by example:

A bit of gambling

- toss (biased) coin & draw ball from each urn
- win if (heads and a red ball) or (two balls of same color)

ProbLog by example: A bit of gambling

- toss (biased) coin & draw ball from each urn
- win if (heads and a red ball) or (two balls of same color)
- 0.4 :: heads.

probabilistic fact: heads is true with probability 0.4 (and false with 0.6)

h

ProbLog by example: A bit of gambling

- toss (biased) coin & draw ball from each urn
- win if (heads and a red ball) or (two balls of same color)
- 0.4 :: heads. annotated disjunction: first ball is red with probability 0.3 and blue with 0.7
- 0.3 :: col(1, red); 0.7 :: col(1, blue) <- true.

h

ProbLog by example: A bit of gambling

- toss (biased) coin & draw ball from each urn
- win if (heads and a red ball) or (two balls of same color)
- 0.4 :: heads.

A bit of gambling

ProbLog by example:

h

- toss (biased) coin & draw ball from each urn
- win if (heads and a red ball) or (two balls of same color)
- 0.4 :: heads.
- 0.3 :: col(1,red); 0.7 :: col(1,blue) <- true. 0.2 :: col(2,red); 0.3 :: col(2,green); 0.5 :: col(2,blue) <- true.</pre>

A bit of gambling

ProbLog by example:

h

- toss (biased) coin & draw ball from each urn
- win if (heads and a red ball) or (two balls of same color)
- 0.4 :: heads.
- 0.3 :: col(1,red); 0.7 :: col(1,blue) <- true. 0.2 :: col(2,red); 0.3 :: col(2,green); 0.5 :: col(2,blue) <- true.</pre>
- win :- heads, col(_,red). logical rule encoding
 win :- col(1,C), col(2,C). background knowledge

A bit of gambling

ProbLog by example:

h

- toss (biased) coin & draw ball from each urn
- win if (heads and a red ball) or (two balls of same color)

```
0.4 :: heads. probabilistic choices
0.3 :: col(1,red); 0.7 :: col(1,blue) <- true.
0.2 :: col(2,red); 0.3 :: col(2,green);
0.5 :: col(2,blue) <- true.
win :- heads, col(_,red).
win :- col(1,C), col(2,C). consequences
```

Questions

0.4 :: heads.

```
0.3 :: col(1,red); 0.7 :: col(1,blue) <- true.
0.2 :: col(2,red); 0.3 :: col(2,green); 0.5 :: col(2,blue) <- true.</pre>
```

```
win :- heads, col(_,red).
win :- col(1,C), col(2,C).
```

marginal probability

• Probability of win

conditional probability

- Probability of win given col (2, green)?
- Most probable world where win is true?
 MPE inference

Possible Worlds

```
0.4 :: heads.
```

```
0.3 :: col(1,red); 0.7 :: col(1,blue) <- true.
0.2 :: col(2,red); 0.3 :: col(2,green); 0.5 :: col(2,blue) <- true.</pre>
```

```
win :- heads, col(_,red).
win :- col(1,C), col(2,C).
```


All Possible Worlds

Distribution Semantics (with probabilistic facts) [Sato, ICLP 95]

[Vennekens et al, ICLP 04]

Alternative view: CP-Logic

P(break)=0.6×0.5×0.8+0.6×0.5×0.2+0.6×0.5+0.4×0.5×0.8

CP-logic [Vennekens et al.]

E.g., "throwing a rock at a glass breaks it with probability 0.3 and misses it with probability 0.7"

 $(Broken(G):0.3) \vee (Miss 0.7) \leftarrow ThrowAt(G).$

ote that the actual non-deterministic event ("rock flying at glass") is implicit

Slides CP-logic courtesy Joost Vennekens

Semantics

(Broken(G) 0.3) ∨ (Miss 0.7) ← ThrowAt(G)

Probability tree is an execution model of theory iff:

- Each tree-transition matches causal law
- The tree cannot be extended
- Each execution model defines the <u>same</u> probability distribution over final states

Slides CP-logic courtesy Joost Vennekens

Continuous Distributions

• Discrete- and continuous-valued random variables

22

• Discrete- and continuous-valued random variables

22

random variable with Gaussian distribution

length(Obj) ~ gaussian(6.0,0.45) :- type(Obj,glass).

• Discrete- and continuous-valued random variables

22

• Discrete- and continuous-valued random variables

```
length(Obj) ~ gaussian(6.0,0.45) :- type(Obj,glass).
stackable(OBot,OTop) :-
      \simeqlength(OBot) \geq \simeqlength(OTop),
      \simeqwidth(OBot) \geq \simeqwidth(OTop).
ontype(Obj,plate) ~ finite([0 : glass, 0.0024 : cup,
                              0 : pitcher, 0.8676 : plate,
                              0.0284 : bowl, 0 : serving,
                              0.1016 : none])
                          :- obj(Obj), on(Obj,O2), type(O2,plate).
                   random variable with
                       discrete distribution
                                         [Gutmann et al, TPLP 11; Nitti et al, IROS 13]
                                   22
```

• Discrete- and continuous-valued random variables

22

- Defines a generative process (as for CP-logic)
- Tree can become infinitely wide
 - Sampling
- Well-defined under reasonable assumptions
- See Gutmann et al TPLP 11

Probabilistic Programs

- Distributional clauses / PLP similar in spirit
 - to e.g. BLOG, ... but embedded in existing logic and programming language
 - to e.g. Church but use of logic instead of functional programming ...
 - natural possible world semantics and link with prob. databases.
 - somewhat harder to do meta-programming

Markov Logic

Key differences

- programming language
- Dist. Sem. uses least-fix point semantics
 - can express transitive closure of relation
 - this cannot be expressed in FOL (and Markov Logic), requires second order logic
 - p(X,Y) := p(X,Z), p(Z,Y).
Inference in PLP

- As in Prolog and logic programming
 - proof-based
- As in Answer Set Programming
 - model based
- As in Probabilistic Programming
 - sampling

Inference for DC

 $n \sim uniform([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).$ $color(X) \sim uniform([grey, blue, black]) \leftarrow material(X) \sim= metal.$ $color(X) \sim uniform([black, brown]) \leftarrow material(X) \sim=wood.$ $material(X) \sim finite([0.3:wood,0.7:metal]) \leftarrow n \sim = N, between(1,N,X).$ $drawn(Y) \sim uniform(L) \leftarrow n \sim = N, findall(X, between(1, N, X), L).$ $size(X) \sim beta(2, 3) \leftarrow material(X) \sim = metal.$ $size(X) \sim beta(4, 2) \leftarrow material(X) \sim = wood.$

LW for DC

Given a goal G and the global variables $w_q^{(i)}$, iq, $x^{P(i)}$, applying a rule produces a new goal G' and modifies the global variables:

- 1. G' is the new goal obtained from G using a kind of SLD-resolution step; 2. if a new variable r is sampled with value v,
 - set $w_q^{(i)} \leftarrow w_q^{(i)} \frac{p(r=v|x^{P(i)})}{g(r=v|x^{P(i)})}$ (based on LW) and - $x^{P(i)} \leftarrow x^{P(i)} \cup \{r=v\}.$ In addition, if $r = Val \in iq$ with r grounded, then: - $iq \leftarrow iq\theta$ with $\theta = \{Val = v\}.$
- 3. if a new atom a is proved set $x^{\hat{P}(i)} \leftarrow x^{P(i)} \cup \{a\}$.

$$\begin{array}{l} -1: (\operatorname{color}(2) \sim = \operatorname{black}); w_q^{(i)} = 1; x^{P(i)} = \emptyset \\ \downarrow 2b \text{ on } (7): \\ 2: (\operatorname{material}(2) \sim = \operatorname{metal}, \operatorname{sample}(\operatorname{color}(2), \mathcal{D}_{\operatorname{color}(2)}), \operatorname{color}(2) \sim = \operatorname{black}); w_q^{(i)} = 1; x^{P(i)} = \emptyset \\ \downarrow 2b \text{ on } (9): \\ 3: (n \sim = \operatorname{N}, \operatorname{between}(1, \operatorname{N}, 2), \operatorname{sample}(\operatorname{material}(2), \mathcal{D}_{\operatorname{material}(2)}), \operatorname{material}(2) \sim = \operatorname{metal}, \\ & \operatorname{sample}(\operatorname{color}(2), \mathcal{D}_{\operatorname{color}(2)}), \operatorname{color}(2) \sim = \operatorname{black}); w_q^{(i)} = 1; x^{P(i)} = \emptyset \\ 2b \text{ on } (6): \\ 4: (\operatorname{sample}(n, \mathcal{D}_n), n \sim = \operatorname{N}, \operatorname{between}(1, \simeq(n), 2), \operatorname{sample}(\operatorname{material}(2), \mathcal{D}_{\operatorname{material}(2)}), \\ & \operatorname{material}(2) \sim = \operatorname{metal}, \operatorname{sample}(\operatorname{color}(2), \mathcal{D}_{\operatorname{color}(2)}), \operatorname{color}(2) \sim = \operatorname{black}); w_q^{(i)} = 1; x^{P(i)} = \emptyset \\ 3b: \\ 5: (n \sim = 3, \operatorname{between}(1, 3, 2), \operatorname{sample}(\operatorname{material}(2), \mathcal{D}_{\operatorname{material}(2)}), \operatorname{material}(2) \sim = \operatorname{metal}, \\ & \operatorname{sample}(\operatorname{color}(2), \mathcal{D}_{\operatorname{color}(2)}), \operatorname{color}(2) \sim = \operatorname{black}); w_q^{(i)} = 1; x^{P(i)} = \emptyset \\ 2a \text{ followed by 1a} \\ 6: (\operatorname{sample}(\operatorname{material}(2), \mathcal{D}_{\operatorname{material}(2)}), \operatorname{material}(2) \sim = \operatorname{metal}, \operatorname{sample}(\operatorname{color}(2), \mathcal{D}_{\operatorname{color}(2)}), \operatorname{color}(2) \sim = \operatorname{black}); w_q^{(i)} = 1; x^{P(i)} = \{n = 3\} \\ 3b: \\ 7: (\operatorname{material}(2) \sim = \operatorname{metal}, \operatorname{sample}(\operatorname{color}(2), \mathcal{D}_{\operatorname{color}(2)}), \operatorname{color}(2) \sim = \operatorname{black}) \\ w_q^{(i)} = 1; x^{P(i)} = \{n = 3, \operatorname{material}(2) = \operatorname{wood}\} \\ \operatorname{fail}, \operatorname{backtracking to 1} \end{array}$$

$$\begin{array}{ll} \mathbf{n} \sim \mathrm{uniform}([1,2,3,4,5,6,7,8,9,10]). & (6) \\ \mathrm{color}(\mathtt{X}) \sim \mathrm{uniform}([\mathrm{grey},\mathrm{blue},\mathrm{black}]) \leftarrow \mathrm{material}(\mathtt{X}) \sim = \mathrm{metal.} & (7) \\ \mathrm{color}(\mathtt{X}) \sim \mathrm{uniform}([\mathrm{black},\mathrm{brown}]) \leftarrow \mathrm{material}(\mathtt{X}) \sim = \mathrm{wood.} & (8) \\ \mathrm{material}(\mathtt{X}) \sim \mathrm{finite}([0.3:\mathrm{wood},0.7:\mathrm{metal}]) \leftarrow \mathbf{n} \sim = \mathtt{N}, \mathrm{between}(\mathtt{1},\mathtt{N},\mathtt{X}). & (9) \\ \mathrm{drawn}(\mathtt{Y}) \sim \mathrm{uniform}(\mathtt{L}) \leftarrow \mathbf{n} \sim = \mathtt{N}, \mathrm{findall}(\mathtt{X},\mathrm{between}(\mathtt{1},\mathtt{N},\mathtt{X}). & (10) \\ \mathrm{size}(\mathtt{X}) \sim \mathrm{beta}(\mathtt{2},\mathtt{3}) \leftarrow \mathrm{material}(\mathtt{X}) \sim = \mathrm{metal.} & (11) \\ \mathrm{size}(\mathtt{X}) \sim \mathrm{beta}(\mathtt{4},\mathtt{2}) \leftarrow \mathrm{material}(\mathtt{X}) \sim = \mathrm{wood.} & (12) \\ +1: (\mathrm{color}(\mathtt{2}) \sim = \mathrm{black}); w_q^{(i)} = 1; x^{P(i)} = \emptyset \\ +2\mathrm{b} \text{ on } (8): \end{array}$$

9: (material(2) ~= wood, sample(color(2),
$$\mathcal{D}_{color(2)}$$
), color(2) ~= black)

$$\begin{array}{c} w_q^{(i)} = 1; \ x^{P(i)} = \{n = 3, \texttt{material}(2) = \texttt{wood}\} \\ \downarrow 2a: \\ 10: (\texttt{sample}(\texttt{color}(2), \mathcal{D}_{\texttt{color}(2)}), \texttt{color}(2) \sim = \texttt{black}); w = 1; x^{P(i)} = \{n = 3, \texttt{material}(2) = \texttt{wood}\} \\ \downarrow 3a: \\ 11: (\texttt{color}(2) \sim = \texttt{black}); w_q^{(i)} = 1/3; \ x^{P(i)} = \{n = 3, \texttt{material}(2) = \texttt{wood}, \texttt{color}(2) = \texttt{black}\} \\ \downarrow 1a: \\ 12: \Box; w_q^{(i)} = 1/3; \ x^{P(i)} = \{n = 3, \texttt{material}(2) = \texttt{wood}, \texttt{color}(2) = \texttt{black}\} \end{array}$$

can cope with evidence like color(1) = color(2)and size(1) = 0.356, size(1)=size(2), ... outperforms BLOG ... unification + LW

Affordances with DCs

Affordances

- Model captures action opportunities
 - What can one do with an object?
- Three main aspects:
 - Object (properties):
 - Measured from perceptual devices
 - shape, size, ...
 - Action:
 - Applied physical manipulation
 - Tap, Push, Grab
 - Effects:
 - Measurable features after action
 - displacement, orientation, ...

Inputs	Outputs	Function						
(O, A)	E	Effect prediction						
(O, E)	A	Action recognition/planning						
(A, E)	0	Object recognition/selection						

Learning relational affordances

Learn probabilistic model

Inputs	Outputs	Function						
(O, A)	E	Effect prediction						
(O, E)	A	Action recognition/planning						
(A, E)	0	Object recognition/selection						

Learning relational affordances between two objects (learnt by experience)

From two object interactions Generalize to N

Moldovan et al. ICRA 12, 13, 14, PhD 15

Learning relational affordances

Learn probabilistic model

Inputs	Outputs	Function						
(O, A)	E	Effect prediction						
(O, E)	A	Action recognition/planning						
(A, E)	0	Object recognition/selection						

Learning relational affordances between two objects (learnt by experience)

From two object interactions Generalize to N

Moldovan et al. ICRA 12, 13, 14, PhD 15

Learning relational affordances between two objects (learnt by experience)

Right Arm

Examples

Learning relational affordances between two objects (learnt by experience)

Right Arm

Examples

What is an affordance ?

Clip 8: Relational O before (l), and E after the action execution (r).

Table 1: Example collected O, A, E data for action in Figure 8

Object Properties	Action	Effects
$\begin{array}{c} shape_{O_{Main}}: sprism\\ shape_{O_{Sec}}: sprism\\ dist X_{O_{Main},O_{Sec}}: 6.94cm\\ dist Y_{O_{Main}}: 0.6 \\ \end{array}$	tap(10)	$\begin{array}{c} displ X_{O_{Main}} : 10.33cm \\ displ Y_{O_{Main}} : -0.68cm \\ displ X_{O_{Sec}} : 7.43cm \\ displ Y_{O_{G}} : -1.31cm \end{array}$

- Formalism related to STRIPS but models delta
 - but also joint probability model over A, E, O

Bayesian Network

Learning relational affordances

if goal not reached

Clip 4: Pipeline for table-top two-arm object manipulation.

- 1a) learn a Linear Continuous Gaussian (LCG) Bayesian Network (BN) from single arm and simultaneous two-arm exploratory data,
- 1b) from the LCG model, build the two-arm continuous domain relational affordance model in a PPL,
- 2) build a state transition model from the relational affordance model, and
- 3) infer best action to execute to reach goal (step repeated until goal reached).

Remaining challenge

- Learn DC model directly
- Work on planning with DC (Nitti et al., ECML, EWRL 15)

Occluded Object Search

- How to achieve a specific configuration of objects on the shelf?
- Where's the orange mug?
- Where's something to serve soup in?
- Models of objects and their spatial arrangement

[Moldovan et al. 14]

Dynamics

Dynamics: Evolving Networks

- Travian: A massively multiplayer real-time strategy game
 - Commercial game run by TravianGames GmbH
 - ~3.000.000 players spread over different "worlds"
 - ~25.000 players in one world

[Thon et al. MLJ 11]

Fragment of world with

~10 alliances ~200 players ~600 cities

alliances color-coded

Can we build a model of this world ? Can we use it for playing better ?

Fragment of world with

~10 alliances ~200 players ~600 cities

alliances color-coded

Can we build a model of this world ? Can we use it for playing better ?

Fragment of world with

~10 alliances ~200 players ~600 cities

alliances color-coded

Can we build a model of this world ? Can we use it for playing better ?

Fragment of world with

~10 alliances ~200 players ~600 cities

alliances color-coded

Can we build a model of this world ? Can we use it for playing better ?

Fragment of world with

~10 alliances ~200 players ~600 cities

alliances color-coded

Can we build a model of this world ? Can we use it for playing better ?

Fragment of world with

~10 alliances ~200 players ~600 cities

alliances color-coded

Can we build a model of this world ? Can we use it for playing better ?

how does the world change over time?

how does the world change over time?

0.4::conquest(Attacker,C); 0.6::nil <-

city(C,Owner), city(C2,Attacker), close(C,C2).

if **cause** holds at time T

how does the world change over time?

one of the effects holds at time T+I

0.4::conquest(Attacker,C); 0.6::nil <-

city(C,Owner),city(C2,Attacker),close(C,C2).

if **cause** holds at time T

how does the world change over time?

one of the **effects** holds at time T+I

0.4::conquest(Attacker,C); 0.6::nil <-

city(C,Owner),city(C2,Attacker),close(C,C2).

if **cause** holds at time T

Limitations CPT-L

Inference slow / scalability

- uses knowledge compilation method
- compile formula for $P(I_{t+1}|I_{[0,t]})$
- exponential in number of time steps

Learning : fully observable

No continuous distributions

Relational Tracking

- Track people or objects over time? Even if temporarily hidden?
- Recognize activities?
 - Infer object properties?

Relational State Estimation over Time

Magnetism scenario

- object tracking
- category estimation from interactions

		(c)	rotated	box	on	a (o	i) cube	and	box	inside
(a) cube on the box	(b) cube inside the box	beig	ge box			tł	ne beige	e box		

Box scenario

- object tracking even when invisible
- estimate spatial relations

Magnetic scenario

• 3 object types: magnetic, ferromagnetic, nonmagnetic

- Nonmagnetic objects do not interact
- A magnet and a ferromagnetic object attract each other

- Magnetic force that depends on the distance
- · If an object is held magnetic force is compensated.

53

Magnetic scenario

3 object types: magnetic, ferromagnetic, nonmagnetic

type(X)_t ~ finite([1/3:magnet,1/3:ferromagnetic,1/3:nonmagnetic]) ← object(X).

2 magnets attract or repulse

interaction(A,B)_t ~ finite([0.5:attraction,0.5:repulsion]) \leftarrow object(A), object(B), A<B,type(A)_t = magnet,type(B)_t = magnet.

Next position after attraction

 $pos(A)_{t+1} \sim gaussian(middlepoint(A,B)_t,Cov) \leftarrow$ $near(A,B)_t, not(held(A)), not(held(B)),$ $interaction(A,B)_t = attr,$ $c/dist(A,B)_t^2 > friction(A)_t.$

 $pos(A)_{t+1} \sim gaussian(pos(A)_t, Cov) \leftarrow not(attraction(A,B)).$

IROS 13

IROS 13

Dynamic Distributional Clauses

Prior distribution $p(x_0)$ State transition model $p(x_t|x_{t-1}, u_t)$ Measurement model $p(z_t|x_t)$ Other rules: $p(x'_t|x''_t)$

Particle Filter (Sequential Monte Carlo)

- Based on sampling → approximate inference
- Particles (samples) to represent bel(x,)

Classical Particle Filter vs DCPF

- Classical PF
 - Fixed set of random variables
 - -Update the entire state
- DCPF
 - Adaptive state (particle): the number of facts / random variables can change over time
 - Particles are partial interpretations
 - Expressive language


```
Pos(1)=(0, 3)
Pos(2)=(0, 1)
right(X,Y)
near(X,Y)
interaction(X,Y)
type(X) ~ [1/3:magnet,...]
[...]
```

Optimized inference: partial state

Distributional Clauses Particle Filter (DCPF)

Classical particle filter

Pos(1)=(0, 3) Pos(2)=(0, 1) near(1,2)=false near(2,1)=false interaction(1,2)=none type(1)=nonmagnetic type(2)=nonmagnetic [...]

Pos(1)=(0, 2) Pos(2)=(0, 1) near(1,2)=true near(2,1)=true interaction(1,2)=none type(1)=nonmagnetic type(2)=nonmagnetic [...]

Inference in DCPF

Two steps:

Query $p(z_{t+1}|x_{t+1})$ (weighting + part of sampling step) Query $p(x_{t+1}|x_t, u_{t+1})$ (to complete the sampling step)

particles are partial interpretations

bel(x_t) fully represented by $\{x_t^{(i)}\} \cup$ Program

History {x_{0:t-1}⁽ⁱ⁾} not necessary

Issue: particles (interpretations) may grow till becoming complete

Ongoing Work

- Parameter learning [Nitti, ICRA 2014]
- Integrate with planning [Nitti ECML, EWRL 15]
- Larger Experiments
- Connection to probabilistic programming
- Applications in robotics (also to learn affordances)

ProbLog for activity recognition from video

CAVIAR-INRIA human activity dataset

28 videos ≈ 26.500 frames

- Separation between low-level events (LLE) and high-level events (HLE)
 - LLE: walking, running, active, inactive, abrupt
 - HLE: meeting, moving, fighting, leaving_object
- Probabilistic Logic approach: Event Calculus in ProbLog (Prob-EC) to infer the high-level events from an algebra of low-level events.
- Example:

 $\label{eq:constraint} initiatedAt(fighting(P_1,P_2)=true,T) \leftarrow \\ happensAt(abrupt(P_1),T), \\ holdsAt(close(P_1,P_2,44)=true,T), \\ not happensAt(inactive(P_2),T). \\ \end{tabular}$

Decisions

Biomine Network

Notch receptor processing BiologicalProcess GO:GO:0007220

0.265

Biomine Network

Graphs & Randomness

ProbLog, Phenetic, Prism, ICL, Probabilistic Databases, ...

• all based on a "random graph" model

Stochastic Logic Programs, ProPPR, PCFGs, ...

- based on a "random walk" model
- connected to PageRank

- Causes: Mutations
 - All related to similar phenotype
- Effects: Differentially expressed genes
- 27 000 cause effect pairs

- Interaction network:
 - 3063 nodes
 - Genes
 - Proteins
 - 16794 edges
 - Molecular interactions
 - Uncertain

- Goal: connect causes to effects through common subnetwork
 - = Find mechanism
- Techniques:
 - DTProbLog [Van den Broeck]
 - Approximate inference

Can we find the mechanism 70 onnecting

[De Maeyer et al., Molecular Biosystems 13, NAR 15]

causes to effects?

Figure 1. Overview of PheNetic, a web service for network-based interpretation of 'omics' data. The web service uses as input a genome wide interaction network for the organism of interest, a user generated molecular profiling data set and a gene list derived from these data. Interaction networks for a wide variety of organisms are readily available from the web server. Using the uploaded user-generated molecular data the interaction network is converted into a probabilistic network: edges receive a probability proportional to the levels measured for the terminal nodes in the molecular profiling data set. This probabilistic interaction network is used to infer the sub-network that best links the genes from the gene list. The inferred sub-network provides a trade-off between linking as many genes as possible from the gene list and selecting the least number of edges.

- person(1).
- person(2).
- person(3).
- person(4).
- friend(1,2).
- friend(2,1).
- friend(2,4).
- friend(3,4).
- friend(4,2).

? :: marketed(P) :- person(P).

decision fact: true or false?

- person(1).
- person(2).
- person(3).
- person(4).
- friend(1,2).
- friend(2,1).
- friend(2,4).
- friend(3,4).
- friend(4,2).

? :: marketed(P) :- person(P).

0.3 :: buy_trust(X,Y) :- friend(X,Y). 0.2 :: buy_marketing(P) :- person(P).

buys(X) :- friend(X,Y), buys(Y), buy_trust(X,Y). buys(X) :- marketed(X), buy_marketing(X).

probabilistic facts + logical rules

- person(1).
 person(2).
 person(3).
 person(4).
- **_** , , ,
- friend(1,2).
- friend(2,1).
- friend(2,4).
- friend(3,4).
- friend(4,2).

? :: marketed(P) :- person(P).

0.3 :: buy_trust(X,Y) :- friend(X,Y). 0.2 :: buy_marketing(P) :- person(P).

buys(X) :- friend(X,Y), buys(Y), buy_trust(X,Y). buys(X) :- marketed(X), buy_marketing(X).

```
buys(P) => 5 :- person(P).
marketed(P) => -3 :- person(P).
```

```
utility facts: cost/reward if true
```


- person(1).
- person(2).
- person(3).
- person(4).
- friend(1,2).
- friend(2,1).
- friend(2,4).
- friend(3,4).
- friend(4,2).

```
0.3 :: buy_trust(X,Y) :- friend(X,Y).
0.2 :: buy_marketing(P) :- person(P).
```

```
buys(X) :- friend(X,Y), buys(Y), buy_trust(X,Y).
buys(X) :- marketed(X), buy_marketing(X).
```

```
buys(P) \Rightarrow 5 := person(P).
marketed(P) \Rightarrow -3 := person(P).
```


- person(1).
- person(2).
- person(3).
- person(4).
- friend(1,2).
- friend(2,1).
- friend(2,4).
- friend(3,4).
- friend(4,2).

```
0.3 :: buy_trust(X,Y) :- friend(X,Y).
0.2 :: buy_marketing(P) :- person(P).
```

```
buys(X) :- friend(X,Y), buys(Y), buy_trust(X,Y).
buys(X) :- marketed(X), buy_marketing(X).
```

```
buys(P) \Rightarrow 5 := person(P).
marketed(P) \Rightarrow -3 := person(P).
```


- person(1).
- person(2).
- person(3).
- person(4).
- friend(1,2).
- friend(2,1).
- friend(2,4).
- friend(3,4).
- friend(4,2).

? :: marketed(P) :- person(P).

```
0.3 :: buy_trust(X,Y) :- friend(X,Y).
0.2 :: buy_marketing(P) :- person(P).
```

```
buys(X) :- friend(X,Y), buys(Y), buy_trust(X,Y).
buys(X) :- marketed(X), buy_marketing(X).
```

```
buys(P) \Rightarrow 5 := person(P).
marketed(P) \Rightarrow -3 := person(P).
```

marketed(1) marketed(3)

- person(1).
- person(2).
- person(3).
- person(4).
- friend(1,2).
- friend(2,1).
- friend(2,4).
- friend(3,4).
- friend(4,2).

```
0.3 :: buy_trust(X,Y) :- friend(X,Y).
0.2 :: buy_marketing(P) :- person(P).
```

```
buys(X) :- friend(X,Y), buys(Y), buy_trust(X,Y).
buys(X) :- marketed(X), buy_marketing(X).
```

```
buys(P) \Rightarrow 5 := person(P).
marketed(P) \Rightarrow -3 := person(P).
```

marketed(1)	marketed(3)	
bt(2,1)	bt(2,4)	bm(1)

- person(1).
- person(2).
- person(3).
- person(4).
- friend(1,2).
- friend(2,1).
- friend(2,4).
- friend(3,4).
- friend(4,2).

```
0.3 :: buy_trust(X,Y) :- friend(X,Y).
0.2 :: buy_marketing(P) :- person(P).
```

```
buys(X) :- friend(X,Y), buys(Y), buy_trust(X,Y).
buys(X) :- marketed(X), buy_marketing(X).
```

```
buys(P) \Rightarrow 5 := person(P).
marketed(P) \Rightarrow -3 := person(P).
```

marketed(1)	mar	keted(3)
bt(2,1)	bt(2,4)	bm(1)
buys (1)	buys(2)	

- person(1).
- person(2).
- person(3).
- person(4).
- friend(1,2).
- friend(2,1).
- friend(2,4).
- friend(3,4).
- friend(4,2).

```
0.3 :: buy_trust(X,Y) :- friend(X,Y).
0.2 :: buy_marketing(P) :- person(P).
```

```
buys(X) :- friend(X,Y), buys(Y), buy_trust(X,Y).
buys(X) :- marketed(X), buy_marketing(X).
```

```
buys(P) => 5 :- person(P).
marketed(P) => -3 :- person(P).
utility = -3 + -3 + 5 + 5 = 4
probability = 0.0032
```

marketed(1)	mar	keted(3)
bt(2,1)	bt(2,4)	bm(1)
buys(1)	buys(2)	

- person(1).
- person(2).
- person(3).
- person(4).
- friend(1,2).
- friend(2,1).
- friend(2,4).
- friend(3,4).
- friend(4,2).

```
0.3 :: buy_trust(X,Y) :- friend(X,Y).
0.2 :: buy_marketing(P) :- person(P).
```

```
buys(X) :- friend(X,Y), buys(Y), buy_trust(X,Y).
buys(X) :- marketed(X), buy_marketing(X).
```

```
buys (P) => 5 :- person (P).
marketed (P) => -3 :- person (P).
utility = -3 + -3 + 5 + 5 = 4
probability = 0.0032
marketed(1) marketed(3)
bt(2,1) bt(2,4) bm(1)
buys(1) buys(2)
```


- person(1).
- person(2).
- person(3).
- person(4).
- friend(1,2).
- friend(2,1).
- friend(2,4).
- friend(3,4).
- friend(4,2).

```
world contributes
0.0032×4 to
expected utility of
strategy
```

? :: marketed(P) :- person(P).

```
0.3 :: buy_trust(X,Y) :- friend(X,Y).
0.2 :: buy_marketing(P) :- person(P).
```

```
buys(X) :- friend(X,Y), buys(Y), buy_trust(X,Y).
buys(X) :- marketed(X), buy_marketing(X).
```

```
buys(P) => 5 :- person(P).
marketed(P) => -3 :- person(P).
```


- person(1).
 person(2).
- person(2)
- person(3).
- person(4).
- friend(1,2).
- friend(2,1).
- friend(2,4).
- friend(3,4).
- friend(4,2).

task: find strategy that maximizes expected utility **solution:** using ProbLog technology

A true application

A tool for Computational Biology

Based on decision theoretic variation of ProbLog ProbLog / Prob. Programming for prototyping More specialised inference engine was needed also some special purpose approximations

Probabilistic Rule learning
Information Extraction in NELL

instance	iteration	date learned	confidence
<u>kelly_andrews</u> is a <u>female</u>	826	29-mar-2014	98.7 🖧 ኛ
investment_next_year is an economic sector	829	10-apr-2014	95.3 🗇 ኛ
shibenik is a geopolitical entity that is an organization	829	10-apr-2014	97.2 🖧 ኛ
<u>quality_web_design_work</u> is a <u>character trait</u>	826	29-mar-2014	91.0 🏠 ኛ
mercedes_benz_cls_by_carlsson is an automobile manufacturer	829	10-apr-2014	95.2 🖧 ኛ
social_work is an academic program at the university rutgers_university	827	02-apr-2014	93.8 🍃 ኛ
dante wrote the book the_divine_comedy	826	29-mar-2014	93.8 🗳 ኛ
willie_aames was born in the city los_angeles	831	16-apr-2014	100.0 🏠 🖑
<u>kitt_peak</u> is a mountain <u>in the state or province</u> arizona	831	16-apr-2014	96.9 🗳 ኛ
<u>greenwich</u> is a park <u>in the city</u> <u>london</u>	831	16-apr-2014	100.0 🍃 ኛ

76

instances for many different relations

degree of certainty

NELL: http://rtw.ml.cmu.edu/rtw/

Rule learning in NELL (I)

- Original approach
 - Make probabilistic data deterministic
 - run classic rule-learner (variant of FOIL)
 - re-introduce probabilities on learned rules and predict

Rule learning in NELL (2)

- Newer Page Rank Based Approach (Cohen et al.) --ProPPR
 - Change the underlying model, from random graph / database to random walk one;
 - No longer "degree of belief" assigned to facts;
 - more like stochastic logic programs
 - Learn rules / parameters

Probabilistic Rule Learning

- Learn the rules directly in a PLP setting
- Generalize relational learning and inductive logic programming directly towards probabilistic setting
- Traditional rule learning/ILP as a special case
- Apply to probabilistic databases like NELL
- ILP 10, IJCAI 15

Pro Log

surfing(X) :- not pop(X) and windok(X).
surfing(X) :- not pop(X) and sunshine(X).

pop(e1). windok(e1). sunshine(e1). B

?-surfing(e1). e no BUH =\= e (H does not cover e)

An ILP example

ProbLog a probabilistic Prolog

p1:: surfing(X) :- not pop(X) and windok(X).

p2:: surfing(X) :- not pop(X) and sunshine(X).

0.2::pop(e1). 0.7::windok(e1). 0.6::sunshine(e1). B

?-P(surfing(e1)).

gives (1-0.2) x 0.7 x p1 + (1-0.2) x 0.6 x (1-0.7) x p2 = P(B U H |= e) not pop x windok x p1 + not pop x sunshine x (not windok) x p1

probability that the example is covered

Inductive Probabilistic Logic Programs

Given

a set of example facts $e \in E$ together with the probability p that they hold

a background theory B in ProbLog

a hypothesis space L (a set of clauses)

Find

$$\arg\min_{H} loss(H, B, E) = \arg\min_{H} \sum_{e_i \in E} |P_s(B \cup H \models e) - p_i|$$

Observations

Propositional versus first order

- traditional rule learning = propositional
- inductive logic programming = first order

Deterministic case

- all probabilities 0 or 1
- traditional rule learning / ILP as special case

Analysis

Rule learning

Interesting properties

- adding a rule is monotonic, this can only increase the probability of an example
- adding a condition to a rule is anti-monotonic, this can only decrease the probability of an example
- several rules may be needed to cover an example
 - use all examples all of the time (do not delete them while learning), do not forget the positives
 - disjoint sum problem

ProbFOIL

Quinlan's well-known FOIL algorithm combined with ProbLog and probabilistic examples and background knowledge

Essentially a vanilla sequential covering algorithm with m-estimate as local score and accuracy as global score.

Criteria

$$precision = \frac{TP}{TP + FP}$$

$$m\text{-estimate} = \frac{TP + m \cdot \frac{P}{N}}{TP + FP + m} \quad \text{local score}$$

$$recall = \frac{TP}{TP + FN}$$

$$accuracy = \frac{TP + TN}{TP + TN + FP + FN} \quad \text{global}$$

score

Avoiding overfitting using significance test

ProbFOIL

Al	gorithm 1 The ProbFOIL ⁺ learning algorithm					
1:	function $PROBFOIL^+(target)$	\triangleright target is the target predicate				
2:	$H := \emptyset$					
3:	while true do					
4:	clause := LEARNRULE(H, target)					
5:	: if $GLOBALSCORE(H) < GLOBALSCORE(H \cup \{clause\})$ then					
6:	$H := H \cup \{clause\}$					
7:	else					
8:	$\mathbf{return}\ H$					
9:	function LEARNRULE $(H, target)$					
10:	$candidates := \{x :: target \leftarrow true\}$	▷ Start with an empty (probabilistic) body				
11:	$bestrule := (x :: target \leftarrow true)$					
12:	while $candidates \neq \emptyset$ do					
13:	$next candidates := \emptyset$					
14:	for all $x :: target \leftarrow body \in candidates$ do					
15:	for all $literal \in \rho(target \leftarrow body)$ do	\triangleright Generate all refinements				
16:	if not REJECTREFINEMENT(H , bestrule, $x :: target$	$t \leftarrow body$) then \triangleright Reject unsuited				
	refinements					
17:	$next candidates := next candidates \cup \{x :: target \}$	$et \leftarrow body \land l\}$				
18:	if LOCALSCORE $(H, x :: target \leftarrow body \land litera$	l) > LOCALSCORE(H, bestrule) then				
19:	$bestrule := (x :: target \leftarrow body \land literal)$	▷ Update best rule				
20:	candidates := next candidates					
21:	return bestrule					

Extended rule learning

Learn rules with probability x:: head :- body

What changes ?

• value of x determines prob. of coverage of example

Extended rule learning

Express local score as a function of x

Compute optimal value of x

NELL

Table 5: Number of facts per predicate (NELL athlete dataset)

athlete coach (person, person)	18	athleteplays for team (person, team)	721
athleteplayssport(person, sport)	1921	teamplays in league (team, league)	1085
a th let e plays in league (person, league)	872	athletealsoknownas(person, name)	17
coachesinleague(person, league)	93	coachesteam(person, team)	132
teamhomestadium(team, stadium)	198	teamplayssport(team, sport)	359
athleteplayssportsteamposition(person, position)	255	athletehomestadium(person, stadium)	187
athlete(person)	1909	attraction(stadium)	2
$\operatorname{coach}(\operatorname{person})$	624	female(person)	2
male(person)	7	hobby(sport)	5
organization(league)	1	person(person)	2
personafrica(person)	1	personasia(person)	4
personaustralia(person)	22	personcanada(person)	1
personeurope(person)	1	personmexico(person)	108
personus(person)	6	$\operatorname{sport}(\operatorname{sport})$	36
sportsleague(league)	18	sportsteam(team)	1330
sportsteam position (position)	22	stadiumoreventvenue(stadium)	171

athleteplaysforteam

athleteplaysforteam(A,B) := coachesteam(A,B).

0.875::athleteplaysforteam(A,B) :- teamhomestadium(B,C), athletehomestadium(A,C).

- $0.99080::athleteplaysforteam(A,B):=teamhomestadium(B,_), male(A), athleteplayssport(A,_).$
- 0.75::athleteplaysforteam(A,B) :- teamhomestadium(B,_), athleteplaysinleague(A,C), teamplaysinleague(B,C), athlete(A).

 $0.75::athleteplaysforteam(A,B) :- teamplayssport(B,C), athleteplayssport(A,C), coach(A), teamplaysinleague(B,_). 0.97555::athleteplaysforteam(A,B) :- personus(A), teamplayssport(B,_).$

0.762::athleteplaysforteam(A,B) :- teamplayssport(B,C), athleteplayssport(A,C), personmexico(A), teamplaysinleague(B,_).

 $0.52571::athleteplaysforteam(A,B):-teamplayssport(B,C), athleteplayssport(A,C), athleteplaysinleague(A,_), teamplaysinleague(B,_), athlete(A), teamplayssport(B,C).$

 $0.50546::athleteplaysforteam(A,B):=teamplayssport(B,_), teamplaysinleague(B,C), athleteplaysinleague(A,C), athleteplayssport(A,_).$

0.50::athleteplaysforteam(A,B) :- teamplayssport(B,_), teamplaysinleague(B,C), athleteplaysinleague(A,C).

 $0.52941::athleteplaysforteam(A,B) := teamplayssport(B,_), teamhomestadium(B,_), coach(A), teamplaysinleague(B,_).$ $0.55287::athleteplaysforteam(A,B) := teamplayssport(B,_), teamplaysinleague(B,C), athleteplaysinleague(A,C), athlete(A).$

 $0.46875::athleteplaysforteam(A,B) := teamplayssport(B,_), teamplaysinleague(B,_), coach(A), teamhomestadium(B,_).$

Experiments

Table 4: Precision for different experimental setups and parameters (A: m = 1, p = 0.99, B: m = 1000, p = 0.90).

Setting athleteplaysforteam		athleteplayssport		teamplaysinleague		athleteplaysinleague		teamplaysagainstteam		
train/test/rule	Α	В	Α	B	Α	В	Α	В	Α	В
1: det/det/det	74.00	69.36	94.14	93.47	96.29	82.15	80.95	74.14	73.40	73.86
2: det/prob/det	73.51	69.57	97.53	94.85	96.70	87.83	90.83	77.73	73.70	73.35
3: det/prob/prob	74.67	69.82	95.86	94.74	96.35	82.57	82.26	75.29	73.84	74.34
4: det/prob/prob	77.25	73.87	96.53	96.04	98.00	90.59	84.91	79.36	77.26	77.83
5: det/prob/prob	74.76	69.97	95.85	94.69	96.44	82.51	81.99	75.07	73.90	74.16
6: prob/prob/det	75.83	73.11	93.40	93.76	94.44	93.67	79.41	79.42	80.87	80.60
7: prob/prob/prob	78.31	73.72	95.62	95.10	98.84	91.86	96.94	79.49	85.78	81.81

Table 3: Learned relational rules for the different predicates (fold 1).

0.9375::athleteplaysforteam(A,B)	\leftarrow	athleteledsportsteam(A,B).
0.9675::athleteplaysforteam(A,B)	\leftarrow	athleteledsportsteam(A,V1), teamplaysagainstteam(B,V1).
0.9375::athleteplaysforteam(A,B)	\leftarrow	athleteplayssport(A,V1), teamplayssport(B,V1).
0.5109::athleteplaysforteam(A,B)	\leftarrow	athleteplaysinleague(A,V1), teamplaysinleague(B,V1).
0.9070::athleteplayssport(A,B)	\leftarrow	athleteledsportsteam(A,V2), teamalsoknownas(V2,V1), teamplayssport(V1,B),
		teamplayssport(V2,B).
0.9070::athleteplayssport(A,B)	\leftarrow	athleteplaysforteam(A,V2), teamalsoknownas(V2,V1), teamplayssport(V1,B),
		teamplayssport(V2,B),teamalsoknownas(V1,V2).
0.9070::athleteplayssport(A,B)	\leftarrow	athleteplaysforteam(A,V1), teamplayssport(V1,B).
0.9286::athleteplaysinleague(A,B)	\leftarrow	athleteledsportsteam(A,V1), teamplaysinleague(V1,B).
0.7868::athleteplaysinleague(A,B)	\leftarrow	athleteplaysforteam(A,V2), teamalsoknownas(V2,V1), teamplaysinleague(V1,B)
0.9384::athleteplaysinleague(A,B)	\leftarrow	athleteplayssport(A,V2), athleteplayssport(V1,V2), teamplaysinleague(V1,B).
0.9024::athleteplaysinleague(A,B)	\leftarrow	athleteplaysforteam(A,V1), teamplaysinleague(V1,B).

Contributions

Learning rules (or inducing logic programs) from uncertain/ probabilistic data

A new problem formulation

Traditional rule learning (ILP) is the deterministic special case

Traditional rule learning principles apply directly (including ROC analysis)

Maurice Bruynooghe Bart Demoen **Anton Dries** Daan Fierens Jason Filippou Bernd Gutmann Manfred Jaeger Gerda Janssens Kristian Kersting Angelika Kimmig Theofrastos Mantadelis Wannes Meert Bogdan Moldovan Siegfried Nijssen **Davide Nitti** Joris Renkens Kate Revoredo **Ricardo Rocha** Vitor Santos Costa **Dimitar Shterionov** Ingo Thon Hannu Toivonen Guy Van den Broeck **Mathias Verbeke** Jonas Vlasselaer

Thanks !

http://dtai.cs.kuleuven.be/problog

Introduction.

Probabilistic logic programs are logic programs in which some of the facts are annotated with probabilities.

ProbLog is a tool that allows you to intuitively build programs that do not only encode complex interactions between a large sets of heterogenous components but also the inherent uncertainties that are present in real-life situations.

The engine tackles several tasks such as computing the marginals given evidence and learning from (partial) interpretations. ProbLog is a suite of efficient algorithms for various inference tasks. It is based on a conversion of the program and the queries and evidence to a weighted Boolean formula. This allows us to reduce the inference tasks to well-studied tasks such as weighted model counting, which can be solved using state-of-the-art methods known from the graphical model and knowledge compilation literature.

The Language. Probabilistic Logic Programming.

ProbLog makes it easy to express complex, probabilistic models

0.3::stress(X) :- person(X). 0.2::influences(X,Y) :- person(X), person(Y).

- **PRISM** http://sato-www.cs.titech.ac.jp/prism/
- ProbLog2 http://dtai.cs.kuleuven.be/problog/
- Yap Prolog http://www.dcc.fc.up.pt/~vsc/Yap/ includes
 - ProbLogI
 - cplint https://sites.google.com/a/unife.it/ml/cplint
 - CLP(BN)
 - LP2
- **PITA** in XSB Prolog http://xsb.sourceforge.net/
- AlLog2 http://artint.info/code/ailog/ailog2.html
- SLPs http://stoics.org.uk/~nicos/sware/pepl
- contdist http://www.cs.sunysb.edu/~cram/contdist/
- DC https://code.google.com/p/distributional-clauses
- WFOMC http://dtai.cs.kuleuven.be/ml/systems/wfomc

PLP Systems

 $1 \ 2$

References

- Bach SH, Broecheler M, Getoor L, O'Leary DP (2012) Scaling MPE inference for constrained continuous Markov random fields with consensus optimization. In: Proceedings of the 26th Annual Conference on Neural Information Processing Systems (NIPS-12)
- Broecheler M, Mihalkova L, Getoor L (2010) Probabilistic similarity logic. In: Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence (UAI-10)
- Bryant RE (1986) Graph-based algorithms for Boolean function manipulation. IEEE Transactions on Computers 35(8):677–691
- Cohen SB, Simmons RJ, Smith NA (2008) Dynamic programming algorithms as products of weighted logic programs. In: Proceedings of the 24th International Conference on Logic Programming (ICLP-08)
- Cussens J (2001) Parameter estimation in stochastic logic programs. Machine Learning 44(3):245–271
- De Maeyer D, Renkens J, Cloots L, De Raedt L, Marchal K (2013) Phenetic: network-based interpretation of unstructured gene lists in e. coli. Molecular BioSystems 9(7):1594–1603
- De Raedt L, Kimmig A (2013) Probabilistic programming concepts. CoRR abs/1312.4328
- De Raedt L, Kimmig A, Toivonen H (2007) ProbLog: A probabilistic Prolog and its application in link discovery. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI-07)
- De Raedt L, Frasconi P, Kersting K, Muggleton S (eds) (2008) Probabilistic Inductive Logic Programming — Theory and Applications, Lecture Notes in Artificial Intelligence, vol 4911. Springer
- Eisner J, Goldlust E, Smith N (2005) Compiling Comp Ling: Weighted dynamic programming and the Dyna language. In: Proceedings of the Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing (HLT/EMNLP-05)
- Fierens D, Blockeel H, Bruynooghe M, Ramon J (2005) Logical Bayesian networks and their relation to other probabilistic logical models. In: Proceedings of the 15th International Conference on Inductive Logic Programming (ILP-05)
- Fierens D, Van den Broeck G, Bruynooghe M, De Raedt L (2012) Constraints for probabilistic logic programming. In: Proceedings of the NIPS Probabilistic Programming Workshop
- Fierens D, Van den Broeck G, Renkens J, Shterionov D, Gutmann B, Thon I, Janssens G, De Raedt L (2014) Inference and learning in probabilistic logic programs using weighted Boolean formulas. Theory and Practice of Logic Programming (TPLP) FirstView
- Getoor L, Friedman N, Koller D, Pfeffer A, Taskar B (2007) Probabilistic relational models. In: Getoor L, Taskar B (eds) An Introduction to Statistical Relational Learning, MIT Press, pp 129–174
- Goodman N, Mansinghka VK, Roy DM, Bonawitz K, Tenenbaum JB (2008) Church: a language for generative models. In: Proceedings of the 24th Conference on Uncertainty in Artificial Intelligence (UAI-08)
- Gutmann B, Thon I, De Raedt L (2011a) Learning the parameters of probabilistic logic programs from interpretations. In: Proceedings of the 22nd European

Conference on Machine Learning (ECML-11)

- Gutmann B, Thon I, Kimmig A, Bruynooghe M, De Raedt L (2011b) The magic of logical inference in probabilistic programming. Theory and Practice of Logic Programming (TPLP) 11((4–5)):663–680
- Huang B, Kimmig A, Getoor L, Golbeck J (2013) A flexible framework for probabilistic models of social trust. In: Proceedings of the International Conference on Social Computing, Behavioral-Cultural Modeling, and Prediction (SBP-13)
- Jaeger M (2002) Relational Bayesian networks: A survey. Linköping Electronic Articles in Computer and Information Science 7(015)
- Kersting K, Raedt LD (2001) Bayesian logic programs. CoRR cs.AI/0111058
- Kimmig A, Van den Broeck G, De Raedt L (2011a) An algebraic Prolog for reasoning about possible worlds. In: Proceedings of the 25th AAAI Conference on Artificial Intelligence (AAAI-11)
- Kimmig A, Demoen B, De Raedt L, Santos Costa V, Rocha R (2011b) On the implementation of the probabilistic logic programming language ProbLog. Theory and Practice of Logic Programming (TPLP) 11:235–262
- Koller D, Pfeffer A (1998) Probabilistic frame-based systems. In: Proceedings of the 15th National Conference on Artificial Intelligence (AAAI-98)
- McCallum A, Schultz K, Singh S (2009) FACTORIE: Probabilistic programming via imperatively defined factor graphs. In: Proceedings of the 23rd Annual Conference on Neural Information Processing Systems (NIPS-09)
- Milch B, Marthi B, Russell SJ, Sontag D, Ong DL, Kolobov A (2005) Blog: Probabilistic models with unknown objects. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI-05)
- Moldovan B, De Raedt L (2014) Occluded object search by relational affordances. In: IEEE International Conference on Robotics and Automation (ICRA-14)
- Moldovan B, Moreno P, van Otterlo M, Santos-Victor J, De Raedt L (2012) Learning relational affordance models for robots in multi-object manipulation tasks. In: IEEE International Conference on Robotics and Automation (ICRA-12)
- Muggleton S (1996) Stochastic logic programs. In: De Raedt L (ed) Advances in Inductive Logic Programming, IOS Press, pp 254–264
- Nitti D, De Laet T, De Raedt L (2013) A particle filter for hybrid relational domains. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS-13)
- Nitti D, De Laet T, De Raedt L (2014) Relational object tracking and learning. In: IEEE International Conference on Robotics and Automation (ICRA), June 2014
- Pfeffer A (2001) IBAL: A probabilistic rational programming language. In: Proceedings of the 17th International Joint Conference on Artificial Intelligence (IJCAI-01)
- Pfeffer A (2009) Figaro: An object-oriented probabilistic programming language. Tech. rep., Charles River Analytics
- Poole D (2003) First-order probabilistic inference. In: Proceedings of the 18th International Joint Conference on Artificial Intelligence (IJCAI-03)
- Richardson M, Domingos P (2006) Markov logic networks. Machine Learning 62(1-2):107–136
- Santos Costa V, Page D, Cussens J (2008) CLP(BN): Constraint logic programming for probabilistic knowledge. In: De Raedt et al (2008), pp 156–188

- Sato T (1995) A statistical learning method for logic programs with distribution semantics. In: Proceedings of the 12th International Conference on Logic Programming (ICLP-95)
- Sato T, Kameya Y (2001) Parameter learning of logic programs for symbolicstatistical modeling. J Artif Intell Res (JAIR) 15:391–454
- Sato T, Kameya Y (2008) New advances in logic-based probabilistic modeling by prism. In: Probabilistic Inductive Logic Programming, pp 118–155
- Skarlatidis A, Artikis A, Filiopou J, Paliouras G (2014) A probabilistic logic programming event calculus. Theory and Practice of Logic Programming (TPLP) FirstView
- Suciu D, Olteanu D, Ré C, Koch C (2011) Probabilistic Databases. Synthesis Lectures on Data Management, Morgan & Claypool Publishers
- Taskar B, Abbeel P, Koller D (2002) Discriminative probabilistic models for relational data. In: Proceedings of the 18th Conference on Uncertainty in Artificial Intelligence (UAI-02)
- Thon I, Landwehr N, De Raedt L (2008) A simple model for sequences of relational state descriptions. In: Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases (ECML/PKDD-08)
- Thon I, Landwehr N, De Raedt L (2011) Stochastic relational processes: Efficient inference and applications. Machine Learning 82(2):239–272
- Van den Broeck G, Thon I, van Otterlo M, De Raedt L (2010) DTProbLog: A decision-theoretic probabilistic Prolog. In: Proceedings of the 24th AAAI Conference on Artificial Intelligence (AAAI-10)
- Van den Broeck G, Taghipour N, Meert W, Davis J, De Raedt L (2011) Lifted probabilistic inference by first-order knowledge compilation. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI-11)
- Vennekens J, Verbaeten S, Bruynooghe M (2004) Logic programs with annotated disjunctions. In: Proceedings of the 20th International Conference on Logic Programming (ICLP-04)
- Vennekens J, Denecker M, Bruynooghe M (2009) CP-logic: A language of causal probabilistic events and its relation to logic programming. Theory and Practice of Logic Programming (TPLP) 9(3):245–308
- Wang WY, Mazaitis K, Cohen WW (2013) Programming with personalized pagerank: a locally groundable first-order probabilistic logic. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management (CIKM-13)