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Local visual descriptors to characterise the graspability of an 
object point: e.g., point feature histogram (PFH), VFH, 3D SC 

Motivation and Contribution

[545.7 17.2 … 8.6]



Motivation and Contribution

However, such local shape features do not work properly on 
more complex or (self-) occluded objects. 
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ILP Point of view 

Meshes : 
finite / discrete — purely qualitative  

structure and background relations matter 

 Point clouds : 
continuous — purely quantitative  

structure and background relations matter 

understandability less important  



Motivation and Contribution

Contributions 

we show that the extended structure of the object can improve 
robot grasping:  

using SRL, we build a graph-based representation of the object exploiting 
both local numerical features and higher-level information about the 
structure of the object — extended contextual shape information of the 
object. 

we contribute a relational kernel-based approach to numerical 
feature pooling for robot grasping:  

for each descriptor of the object point, our relational kernel exploits 
extended contextual information by pooling numerical shape features 
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The SRL framework: kLog [Frasconi et al., ’12] 
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Grasping primitives 

grasping reaching points 
their 3D locations 
their numerical shape features: 3D shape context, point feature 
histogram (PFH), viewpoint feature histogram (VFH) 
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Data modelling: classic entity/relationship (E/R) data model 
entity sets 

	 	    point(id::self, f1::property, …, fn::property) 

relationships 

          closeBy2 (id1::point, id2::point) 

attributes 

            f1, …, fn, label 
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Relational Robot Grasping

R-relations as background knowledge 
declarative feature construction 

closeBy2(P1,P2) ← point(P1,F11,…,F1n), point(P2,F21,…,F2n),   
sameCloud(P1,P2), edist(P1,P2,Dist), Dist < T. 

T is a constant calculated for every object as a ratio relative to 
the object dimension 
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Relational Robot Grasping

Point cloud interpretation 
each point cloud is represented as an instance of a relational 
database (i.e., as a set of relations) 

x ={point(p1, 10.8, … , 557.9), point(p2, 8.6, … , 545.7), 
point(p3, 19.4, … , 569.4), point(p4, 11.6, … , 620.8), … , 
closeBy2(p1,p3), closeBy2(p3,p2), closeBy2(p4,p5), …, 
closeBy3(p1,p2,p3), …}. 
 
y = {category(p1,nonGrasp), category(p2,nonGrasp), 
category(p3,nonGrasp), category(p4,grasp), …}. 
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Point cloud interpretation 
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Relational Robot Grasping

Feature Generation 
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Relational Robot Grasping

Feature Generation 

decomposition kernel between two graphs [Costa and De 
Grave,’10] counting the number of common parts 

Rr,d ={(Nrv(G), Nru(G),G): d
∗

(u,v)=d}, r=0,…,R, d=0,…,D 

Nrv(G) = subgraph A rooted in v with radius r 
Nru(G) = subgraph B rooted in u with radius r 
A,B: Rr,d-1(A,B,G)



Relational Robot Grasping

The decomposition kernel is defined by relations Rr,d: 

k((A,B),(A′,B′)) = 1 iff (A,B) and (A′,B′) are pairs of isomorphic 
subgraphs — hard match kernel 
k((A,B),(A′,B′)): multinomial distribution of labels in (A,B) or 
(A’,B’) — soft match kernel 
hard match on discrete labels & soft match on numerical labels 
— hard-soft match kernel

K(G,G’) = ∑ ∑     ∑ k((A,B),(A′,B′)).
A,B: Rr,d-1(A,B,G) 

A',B': Rr,d-1(A’,B',G')
r=0 d=0

R D

Now : we would use Orsini’s GIKs [IJCAI 15]
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Figure 4: Illustration of the soft matching kernel. Only features generated by a selected
pair of vertices are represented: vertices A and B at distance 1 yield a multinomial dis-
tribution of the vertex labels in neighborhoods of radius 1. On the right we compute the
contribution to the kernel value by the represented features.

by12:

subgraph

((A,B), (A0, B0
)) =

X

v 2 V (A) [ V (B)

v0 2 V (A0
) [ V (B0

)

1
`(v)=`(v0) (13)

where V (A) is the set of vertices of A. In words, we count the vertices
that share the same label in either one or the other of the neighbourhood
subgraphs.

4.6. Tuples of properties
A standard assumption in graph kernels is that vertex and edge labels are

elements of a discrete domain. However, in kLog the information associated
with vertices is a tuple that can contain both discrete and real values. Here

12Note that the pair of neighborhood subgraphs are considered jointly, i.e. the label
multisets are extracted independently from each subgraph in the pair and then combined
together.
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Experiments and Results

Q1: Does numerical shape feature pooling improve upon local 
shape features for the robot grasping task considered? 

Q2: Does hard-soft matching improve over soft matching when 
incorporating contextual shape information? 



Experiments and Results

Dataset (robot simulator) 
8 objects: ellipse, rectangle, rounded object, 2 glasses, 3 cups 
 2631 instances (1972 positives and 659 negatives) 



Experiments and Results

Shape feature pooling via hyper-parameters R=2,D=2 improves 
upon local shape features (Q1) 
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Experiments and Results

Hard-soft vs soft matching (Q2) 

grasping cell grasping sphere
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Conclusions

We propose a relational kernel-based approach to recognize 
graspable object points 

extended contextual object shape information is encoded via 
qualitative spatial relations among object points 
kernels on graphs are used to compute highly discriminative 
features based on contextual information 

We show experimentally that pooling spatially related numerical 
shape feature improves robot grasping results upon purely local 
shape-based approaches. 


