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The Robot Grasping Task

Find the pre-grasp pose, that is where to place the gripper with
respect to the object, in order to execute a stable grasp

Task: recognize graspable points of an object
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Motivation and Contribution

Local visual descriptors to characterise the graspability of an
object point: e.qg., point feature histogram (PFH), VFH, 3D SC




Motivation and Contribution

However, such local shape features do not work properly on
more complex or (self-) occluded objects.




Motivation and Contribution

ILP Point of view

Figure 12.1: A typical structure with its corresponding FE mesh. From

Dolsak [1991].



Motivation and Contribution

ILP Point of view

1 Meshes :
0 finite / discrete — purely qualitative

O structure and background relations matter
1 Point clouds :

0 continuous — purely quantitative

O structure and background relations matter

O understandability less important



Motivation and Contribution

Contributions

1 we show that the extended structure of the object can improve
robot grasping:
0 using SRL, we build a graph-based representation of the object exploiting
both local numerical features and higher-level information about the

structure of the object — extended contextual shape information of the
object.

[0 we contribute a relational kernel-based approach to numerical
feature pooling for robot grasping:

0 for each descriptor of the object point, our relational kernel exploits
extended contextual information by pooling numerical shape features
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kLog

A language for relational learning with kernels

kLog is a logical and relational language for kernel-based learning. Logical and relational learning problems may be
specified at a high level in a declarative way. It builds on simple but powerful concepts: learning from
interpretations, entity/relationship data modeling, logic programming and deductive databases (Prolog and
Datalog), and graph kernels.

Unlike other statistical relational learning models, kLog does not represent a probability distribution directly. It is
rather a kernel-based approach to learning that employs features derived from a grounded entity/relationship
diagram. These features are derived using a novel technique called graphicalization: first, relational
representations are transformed into graph based representations; subsequently, graph kernels are employed for
defining feature spaces. kLog can use numerical and symbolic data, background knowledge in the form of Prolog
or Datalog programs (as in inductive logic programming systems) and several statistical procedures can be used to
fit the model parameters. The kLog framework can --- in principle --- be applied to tackle the same range of tasks
that has made statistical relational learning so popular, including classification, regression, multitask learning, and
collective classification.

Checkout kLogNLP, a specialized version of kLog for natural language processing

Frasconi, Costa, De Raedt, De Grave, AlJ 14
Verbeke, Frasconi, Costa, De Raedt, De Grave, ACL-Demo, 14



Relational Robot Grasping
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Relational Robot Grasping

@ graspable point
@ nonGraspable point

The SRL framework: kLog [Frasconi et al., '12]
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Relational Robot Grasping

Grasping primitives

[ grasping reaching points
[ their 3D locations

[0 their numerical shape features: 3D shape context, point feature
histogram (PFH), viewpoint feature histogram (VFH)



Relational Robot Grasping

Data modelling: classic entity/relationship (E/R) data model

I entity sets

point(id::self, f1::property, ..., fn::property)

[ relationships closeBy3>
closeByR2 (idi::point, ids::point) (id
O attributes < f:\atego/rf,‘~ point
fl, ..., fn, label \®
Clabel >

closeBy2>



Relational Robot Grasping

R-relations as background knowledge

1 declarative feature construction

closeBy2(P1,P2) < point(P,,F4,...,F1,), point(Ps,Fsy,...,Fapn),
sameCloud(P1,P2), edist(P1,P2,Dist), Dist < T.

[ T is a constant calculated for every object as a ratio relative to
the object dimension



Relational Robot Grasping

Point cloud interpretation

1 each point cloud is represented as an instance of a relational
database (i.e., as a set of relations)

X ={ (p1, 10.8, ..., 557.9), (pe, 8.6, ..., 545.7),

(pz, 19.4, ..., 569.4), (D4, 11.6, ..., 620.8), ...,
closeBy2(pi1,pz), closeBy2(pz,p=2), closeBy&(p4,ps), ...,
closeBy3(p1,P2,P3), ... }-

vy = {category(p,,nonGrasp), category(ps,nonGrasp),
category(psz,nonGrasp), category(p.,grasp), ...}.
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Point cloud interpretation

1 each point cloud is represented as an instance of a relational
database (i.e., as a set of relations)

X ={ (p1, 10.8, ..., 857.9), (pg, 8.6, ..., 545.7),

(D3, 19.4, ..., 569.4), (D4, 11.6, ..., 620.8), ...,
closeBy2(pi1,p3), closeBy2(pz,p:2), closeBy&(p4,ps5), ...,
closeBy3(pi1,P2,P3), ... }-

y = {category(p:,?), category(pz,?), category(ps, ?),
category(p.,?), ...}.
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Graphicalization
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Relational Robot Grasping
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Feature Generation

0 decomposition kernel between two graphs [Costa and De

Grave, 10] counting the number of common parts
T Rrg ={(N(G), N(G),G): d_ (u,v)=d}, r=0,....R, d=0,....D
[ NrY(G) = subgraph A rooted in v with radius r

0 N¥(G) = subgraph B rooted in u with radius r
= AB: Rq'(A,B,G)

e



Relational Robot Grasping
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The decomposition kernel Is defined by relations Rr.q:

KG,G)=3 3 ¥ k((AB),(A'B)).

r=0 d=0 ABFM%ABG
A'B": R.q1(A,B,G"

0 k((A,B),(A',B") = 1iff (A,B) and (A",B’) are pairs of isomorphic
subgraphs — hard match kernel

0 k((A,B),(A",B’)): multinomial distribution of labels in (A,B) or
(A',B’) — soft match kernel

[ hard match on discrete labels & soft match on numerical labels
— hard-soft match kernel

Now : we would use Orsini's GIKs [l[JCAI | 5]

e
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Figure 4: Illustration of the soft matching kernel. Only features generated by a selected
pair of vertices are represented: vertices A and B at distance 1 yield a multinomial dis-
tribution of the vertex labels in neighborhoods of radius 1. On the right we compute the
contribution to the kernel value by the represented features.
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Experiments and Results

Q1: Does numerical shape feature pooling improve upon local
shape features for the robot grasping task considered?

Q2: Does hard-soft matching improve over soft matching when
iIncorporating contextual shape information?



Experiments and Results

Dataset (robot simulator)
[ 8 objects: ellipse, rectangle, rounded object, 2 glasses, 3 cups
0 2631 instances (1972 positives and 659 negatives)
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Experiments and Results

Shape feature pooling via hyper-parameters R=2,D=2 improves
upon local shape features (Q1)
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Experiments and Results

Hard-soft vs soft matching (Q2)
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Conclusions

We propose a relational kernel-based approach to recognize
graspable object points

1 extended contextual object shape information is encoded via
qualitative spatial relations among object points

1 kernels on graphs are used to compute highly discriminative
features based on contextual information

We show experimentally that pooling spatially related numerical
shape feature improves robot grasping results upon purely local
shape-based approaches.



