Processing Markov Logic Networks with GPUs

Carlos Alberto Martínez-Angeles¹, Inês Dutra², Vítor Santos Costa² and Jorge Buenabad-Chávez¹

¹Departamento de Computación, CINVESTAV-IPN Av. Instituto Politécnico Nacional 2508, México D.F. 07360, México. camartinez@cinvestav.mx, jbuenabad@cs.cinvestav.mx

²Departamento de Ciência de Computadores, CRACS INESC-TEC LA and Universidade do Porto, Rua do Campo Alegre 1021, 4169-007, Porto, Portugal {ines,vsc}@dcc.fc.up.pt

August 20-22, 2015

Contents

- 1. Introduction
- 2. Our GPU-based Markov Logic Platform
- 3. Results
- 4. Conclusions

Carlos /	A. N	lartínez-	Ange	les

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □

- Markov logic "combines first-order logic and Markov networks. A knowledge base in Markov logic is a set of first-order [logic] formulas with weights"
- Weights establish soft constraints: worlds that violate a formula are less likely but still possible.
- Markov logic networks have been widely adopted and are used to:
 - Refine Wikipedia's Infobox Ontology.
 - Carry out collective semantic role labelling.
 - Perform Natural Language Processing.
- ► Inference is divided into a *grounding* phase and a *search* phase.

・ 同 ト ・ ヨ ト ・ ヨ ト

MLN program example

ENGLISH AND FIRST-ORDER LOGIC	CLAUSAL FORM (Datalog syntax)	WEIGHT
Friends of friends are friends:		
$Fr(x,y) \& Fr(y,z) \Rightarrow Fr(x,z)$	Fr(x,z) := Fr(x,y), Fr(y,z)	0.7
Smoking causes cancer:		
$Sm(x) \Rightarrow Ca(x)$	Ca(x) := Sm(x)	1.5
If two people are friends and one		
smokes, then so does the other:		
$Fr(x,y) \& Sm(x) \Rightarrow Sm(y)$	Sm(y) := Fr(x,y), Sm(x)	1.1

EVIDENCE	PROCESSIN	G OF VALID GROUNDING	S		RES	SULTS
Fr(John, Anna) Fr(Anna, Bob) Fr(Gary, Frank) Sm(John)	Fr(John,A Sm(Anna) Fr(John,A	nna) & Fr(Anna,Bob) => Ca(Anna) nna) & Sm(John) => S	=> Fr(John,Bob) m(Anna)	0.92 0.59 0.58	Ca(J Ca(<i>I</i> Ca(I	John) Anna) Bob)
	PROCESSING OF INVALID GROUNDINGS					
	Fr(John, Sm(Gary) Fr(Gary	Anna) & Fr(Gary, Fra => Ca(Gray) Frank) & Sm(Gary) =>	mk) => {} Sm(Frank)			
	fi(Gary,	riank) & Sm(Gary) ->		× ≡ ×		୬ଏ୯
Carlos A. Martínez-Angel	es	Cinvestav-IPN	MLNs with GPUs		4/12	

- Alchemy was the first MLN system. Includes various algorithms for inference and learning.
- Tuffy relies on PostgreSQL to perform the grounding using a bottom-up approach, based on SQL queries and accelerated with query optimizations by the RDBMS.
- Rocklt treats inference as an integer linear programming problem. Currently outperforms all other systems.

- Its main components are: Tuffy, YAP Prolog and GPU-Datalog.
- GPU-Datalog evaluates Datalog programs with a bottom-up approach using GPU kernels that implement relational algebra operations.
- Includes several optimizations like operator weaving, automatic memory management, among others.
- It was extended with: management of negation, comparison predicates and a PostgreSQL interface.

▲圖 → ▲ 臣 → ▲ 臣 → 二

Tu2GPU-Datalog sequence diagram I

Tu2GPU-Datalog sequence diagram II

Results

- Applications: Entity Resolution (ER), Relational Classification (RC) and Information Extraction (IE).
- Left plot shows performance using Tuffy's example data.
 Right plot uses bigger, randomly generated data.
- Empty spaces mean that the system did not finish after several hours.

- ▶ For ER, our random data and its recursive clauses generate more recursive steps, 24 vs 2 in the original data.
- GPU-Datalog was designed around these recursive applications. Other systems struggled with costly joins.
- For RC, the search phase alone takes an astounding 43 minutes. The rest of the process approximately 3 minutes.
- During this phase, 5.5M active tuples where used. In contrast, ER uses only 252K tuples.

伺 と く ヨ と く ヨ と

- Our system accelerates the grounding step in MLNs by combining Tuffy with our GPU-Datalog engine.
- Its performance is on par or better than other well-known MLN systems.
- Results show that the benefit of performing the grounding phase on the GPU outweighs the overhead of using a database and of GPU I/O.
- Our system can be greatly improved by also performing the search phase in the GPU.

Thanks

Carles	Mantínan Annalas	
Carlos A.	iviarunez-Angeles	

Cinvestav-IPN

MLNs with GPUs

1

イロン イロン イヨン イヨン

12/12

æ