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Probabilistic Inductive Logic Programming

Probabilistic Logic Programming

Logic + Probability: useful to model domains with complex and
uncertain relationships among entities

Probabilistic logic programming languages under the Distribution
Semantics

Independent Choice Logic (ICL), PRISM, ProbLog, Logic Programs
with Annotated Disjunctions (LPADs),...
They define a probability distribution over normal logic programs
(possible worlds)
The distribution is extended to a joint distribution over worlds and
queries
The probability of a query is obtained from this distribution by
marginalization
They differ in the definition of the probability distribution
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Probabilistic Inductive Logic Programming

Probabilistic Inductive Logic Programming

Learn the parameters given examples, a background and the
structure of the program: PRISM, LeProbLog, LFI-ProbLog,
EMBLEM, ProbLog2
Learn the structure and the parameters given examples and a
background: SLIPCASE, SLIPCOVER, LEMUR
Problem: execution time in the range of hours for datasets fitting in
main memory
Proposed solution: scale systems by distributed parameter and
structure learning by MapReduce.
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Parameter Learning

EMBLEM

EM over Bdds for probabilistic Logic programs Efficient Mining
Parameter learning [Bellodi and Riguzzi, IDA 2013] inspired by
[Ishihata et al., TR 2008] and [Thon et al., ECML 2008], similar to
LFI-ProbLog [Gutmann et al., ECML 2011]
Input: set of interpretations, target predicates, an LPAD
BDDs encode the explanations for each ground fact Q for the
target predicates
Hidden variables: the selection of i-th head atom from groundings
of the clauses used in the proof of Q
EM algorithm
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Parameter Learning

EMBLEM

Expectation:
Expected counts of hidden variables: E [cik0|Q] and E [cik1|Q] for all
rules Ci and k = 1, ...,ni(heads)− 1, where cikx is the number of
times a binary variable Xijk takes value x ∈ {0,1}, and for all values
of j ∈ g(i) = {j |θj is a substitution grounding Ci}
Expected counts are computed by traversing twice the BDDs
The counts for individual examples are summed up top obtain
E [cik0] =

∑
Q E [cik0|Q] and E [cik1] =

∑
Q E [cik1|Q]

Maximization:
Computes maximum likelihood parameters from the distributions
parameters πik represent P(Xijk = 1) for all j ∈ g(i) and for all rules
Ci , k = 1, ...,ni − 1; πik = E [cik1] / (E [cik0] + E [cik1])
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Structure Learning

SLIPCOVER

Structure LearnIng of Probabilistic logic programs by searChing
OVER the clause space
Two-phase search strategy:

1 beam search in the space of clauses
2 greedy search in the space of theories

Clause search: beam search for each predicate separately.
Initialize the beam with top clauses. Obtain refinements by adding
a literal from a bottom clause built as in Progol [Muggleton, NGC
1995]. Evaluate refinements through LL by invoking EMBLEM. A
fixed-size list of the best clauses is kept
Theory search: add iteratively clauses from the 1st phase to an
initially empty theory, run EMBLEM to compute the corresponding
LL and keep the clause if the LL increases.
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Distributed Parameter Learning

Distributed Parameter Learning by MapReduce:
EMBLEMMR

We follow the approach of [Chu et al, NIPS 2006] for MapReduce
EM: expectations are computed separately for the various
examples and then aggregated in the Reduce phase
in our case n workers from 1 to n. Worker 1 is the “master”, the
others the “slaves”
The Map function is performed by all workers; the Reduce function
by the master (the “reducer”)
The input interpretations I and the input theory T are replicated
among all workers, the examples E are evenly divided among the
n workers
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Distributed Parameter Learning

EMBLEMMR

Each worker builds the BDDs for its examples. All the mappers
stay active keeping the BDDs in memory
The Expectation step is executed in parallel by sending the current
values of the parameters to each mapper m, which computes the
expectations for each of its examples
The vector of expectations are sent back to the master that
aggregates by component-wise sum them and performs
Maximization

Riguzzi et al. (UNIFE) SEMPRE ILP 2015 8 / 14



Distributed Structure Learning

SEMPRE

Structure lEarning by MaPREduce
Parallelizes SLIPCOVER by employing n workers, one master and
n − 1 slaves. All the workers initially receive all the input data
First parallel operation: scoring the clause refinements: the
revisions Refs for a clause are split evenly among the workers.
Each worker returns the set of refinements with their log-likelihood
(LL). Scoring is performed using (serial) EMBLEM
In the Reduce phase the master updates the beam of promising
clauses
Second parallel operation: scoring the theory refinements with
EMBLEMMR
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Experiments and results

Experiments

SEMPRE was implemented in Yap Prolog using the lammpi
library by Nuno A. Fonseca and Vitor Santos Costa.
Datasets: Hepatitis [Khosravi et al., ML 2012], Mutagenesis
[Srinivasan et al., AI 1996], UWCSE [Kok and Domingos, ICML
2005], Carcinogenesis [Srinivasan et al., ILP 1997], IMDB
[Mihalkova and Mooney, ICML 2007], HIV [Beerenwinkel et al.,
JCB 2005] and WebKB [Craven and Slattery, ML 2001]
Machines with an Intel Xeon Haswell E5-2630 v3 (2.40GHz) CPU
with 8GB of memory allocated to the job.
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Experiments and results

Experiments

1 8 16 32
Hepatitis 19,867 4,246 2,392 1,269
Mutagenesis 14,784 2,887 2,587 1,579
UWCSE 12,758 5,401 3,152 1,899
Carcinogenesis 170 23 18 16
IMDB 481 104 113 177
HIV 508 118 136 295
WebKB 2,441 486 322 256

SEMPRE execution time (in seconds) as the number of slaves varies.
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Experiments and results

Conclusions

The speedup is always larger than 1 and grows with the number of
workers except for HIV and IMDB with 16 and 32 processors
Remarkable speedup both in parameter and structure learning
Most time spend in the beam search of clause refinements: for
UWCSE the time for clause search is around 94% of the total, for
WebKB around 96%.
Average time to handle a refinement is small, around 23ms for
UWCSE and 80ms for WebKB
Hence it is more reasonable to distribute the refinements to
workers
Overall, SEMPRE is able to exploit the availability of processors in
most cases
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Experiments and results

Future Works

Further investigate scaling, especially to datasets not fitting main
memory
Exploit distribution in-memory schemes such as Apache Spark
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Experiments and results
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