Distributed Parameter Learning for Probabilistic Ontologies

Giuseppe Cota¹ Riccardo Zese¹ Elena Bellodi¹ Fabrizio Riguzzi² Evelina Lamma¹

Dipartimento di Ingegneria - University of Ferrara

Dipartimento di Matematica e Informatica – University of Ferrara [giuseppe.cota,riccardo.zese,elena.bellodi,fabrizio.riguzzi, evelina.lamma]@unife.it

ILP 2015

Motivation

- DISPONTE semantics: "Distribution Semantics for Probabilistic ONTologiEs"
- Probabilistic axioms:
 - p :: E

e.g., $p :: C \sqsubseteq D$ represents the fact that we believe in the truth of $C \sqsubseteq D$ with probability p.

- DISPONTE applies the distribution semantics of probabilistic logic programming to description logics
- BUNDLE is a system for reasoning on DISPONTE KBs using Binary Decision Diagrams (BDDs)

DISPONTE

- Atomic choice: a pair (*E_i*, *k*), where *E_i* is the *i*th probabilistic axiom and *k* ∈ {0, 1} indicates whether *E_i* is chosen to be included in a world (*K* = 1) or not (*K* = 0).
- Selection σ : set of one atomic choice for each probabilistic axiom.
- σ identifies a world w_{σ}
- $P(w_{\sigma}) = \prod_{(E_i,1)\in\sigma} p_i \prod_{(E_i,0)\in\sigma} (1-p_i)$
- Probability of a query Q given a world w: P(Q|w) = 1 if w |= Q, 0 otherwise
- Probability of Q $P(Q) = \sum_{w} P(Q, w) = \sum_{w} P(Q|w)P(w) = \sum_{w:w \models Q} P(w)$

Inference and Query answering

- The probability of a query *Q* can be computed according to the distribution semantics by first finding the explanations for *Q* in the knowledge base
- Explanation: subset of axioms of the KB that is sufficient for entailing *Q*
- All the explanations for *Q* must be found, corresponding to all ways of proving *Q*
- Probability of $Q \rightarrow$ probability of the DNF formula

$$F(Q) = \bigvee_{e \in E_Q} (\bigwedge_{F_i \in e} X_i)$$

where E_Q is the set of explanations and X_i is a Boolean random variable associated to axiom F_i

 We exploit Binary Decision Diagrams for efficiently computing the probability of the DNF formula

DISPONTE

Example

- 0.4 :: fluffy : Cat(1)
- 0.3 :: tom : Cat (2)
- 0.6 :: $Cat \sqsubseteq Pet$ (3)

 $\exists hasAnimal.Pet \sqsubseteq NatureLover (4) \\ (kevin, fluffy) : hasAnimal (5) \\ (kevin, tom) : hasAnimal (6) \\ \end{cases}$

• *Q* = *kevin* : *NatureLover* has two explanations:

 $\left\{ \begin{array}{l} (1),\,(3) \\ \{ \ (2),\,(3) \end{array} \right\}$

• $P(Q) = 0.4 \times 0.6 \times (1 - 0.3) + 0.3 \times 0.6 = 0.348$

BUNDLE

- Binary decision diagrams for Uncertain reasoNing on Description Logic thEories
- BUNDLE performs inference over DISPONTE knowledge bases.
- It exploits an underlying ontology reasoner able to return all explanations for a query, such as **Pellet** [Sirin et al, WS 2007]
- Explanations for a query in the form of a set of sets of axioms.
- Then DNF formula built and converted to BDDs for computing the probability

EDGE

- Em over bDds for description loGics paramEter learning
- EDGE is inspired to EMBLEM [Bellodi and Riguzzi, IDA 2013]
- Takes as input a DL theory and a number of examples that represent queries.
- The queries are concept assertions and are divided into:
 - positive examples;
 - negative examples.
- EDGE computes the explanations of each example using BUNDLE, that builds the corresponding BDD.
 - For negative examples, EDGE computes the explanations of the query, builds the BDD and then negates it.
- Then EM cycle.

EM cycle of EDGE

Expectation takes as input a list of BDDs and computes:

- Expected counts of random variables: $E[c_{i0}|Q]$ and $E[c_{i1}|Q]$ for all axioms F_i , where c_{ix} is the number of times the binary variable X_i takes value $x \in \{0, 1\}$
- Expected counts are computed by traversing twice the BDDs
- $E[c_{i0}] = \sum_{Q} E[c_{i0}|Q]$ and $E[c_{i1}] = \sum_{Q} E[c_{i1}|Q]$
- Maximization computes the parameters values for the next EM iteration by relative frequency.
 - parameters π_i represent $P(X_i) = 1$ for all axioms F_i
 - $\pi_i = E[c_{i1}] / (E[c_{i0}] + E[c_{i1}])$
 - The EM algorithm is guaranteed to find a local maximum of the probability of the examples.

EDGE^{MR}

- Distributed Parameter Learning by MapReduce
- Same approach as EMBLEM^{MR}, [Chu et al, NIPS 2006]: expectations are computed separately for each examples and then aggregated in the Reduce phase
- n + 1 workers from 0 to n. Worker 0 is the "master", the others the "slaves"
- The Map function is performed by all workers; the Reduce function by the master (the "reducer")
- The input KB T is replicated among all workers, the examples E are evenly divided among the n + 1 workers

EDGE^{MR}

- Each worker builds the BDDs for its examples. All the mappers stay active keeping the BDDs in memory
- The Expectation step is executed in parallel by sending the current values of the parameters to each mapper *m*, which computes the expectations for each of its examples
- The vector of expectations are sent back to the master that aggregates by component-wise sum them and performs Maximization

Scheduling Techniques

Single-step scheduling:

- *n* is the number of the slaves, the master divides the total number of queries into *n* + 1 chunks
- The master begins to compute its queries while, for each other chunk of queries, it send the chunk to the corresponding slave.
- Then the master waits for the results from the slaves. When the slowest slave returns its results to the master, EDGE^{MR} proceeds to the EM cycle.

Scheduling Techniques

Dynamic scheduling

- Handling each query may require a different amount of time
- At first each machine is assigned a query in order
- Then if the master ends handling a query it just takes the next one, instead, if a slave ends handling a query, it asks the master for a new query and the master sends the next query to the slave
- When all the queries are evaluated, EDGE^{MR} starts the EM cycle.

Experiments

- EDGE^{MR} has been implemented in Java using MPI
- Hardware: machines with an Intel Xeon Haswell E5-2630 v3 (2.40GHz) CPU with 2GB of memory allocated to the job.
- Datasets: Mutagenesis, Carcinogenesis, an extract of DBpedia and education.data.gov.uk
- Generation of positive and negative examples by sampling individuals and classes from the dataset
- five-fold cross-validation for each dataset and for each number of workers

Dataset	# of all axioms	# of proba- bilistic axioms	# of pos. examples	# of neg. examples	Fold size (MiB)
Carcinogenesis	74409	186	103	154	18.64
DBpedia	5380	1379	181	174	0.98
education.data.gov.uk	5467	217	961	966	1.03
Mutagenesis	48354	92	500	500	6.01

Experiments

Dataset	EDGE	EDGE ^{MR}							
		Dynamic				Single-step			
		3	5	9	17	3	5	9	17
Carcinogenesis	847	441.8	241	147.2	94.2	384	268.4	179.2	117.8
DBpedia	1552	1259.8	634	364.6	215.2	1155.6	723.8	452.6	372.6
education.data.gov.uk	6924.2	3878.2	2157.2	1086	623.2	3611.6	2289.6	1331.6	749.4
Mutagenesis	1439.4	635.8	399.8	223.2	130.4	578.2	359.2	230	124.6

Speedup (ratio of the running time of 1 worker to the running time of *n* workers)

Cota et al. (UNIFE)	EDGE ^{MR}	ILP 2015	14 / 16

Conclusions and Future Work

Conclusions

- The speedup is significant even if it is sublinear
- A certain amount of overhead (the resources, and thereby the time, spent for the MPI communications) is present.
- Dynamic scheduling has generally better performance than single-step scheduling.

Future work

- use EDGE^{MR} for distributed structure learning in the LEAP system [Riguzzi et al, URSW 2014]
- exploit Linked Open Data for completing the given data

THANKS FOR LISTENING AND ANY QUESTIONS ?

Cota et al. (UNIFE)

