Completing signaling networks by abductive reasoning with perturbation experiments

Adrien Rougny¹, Yoshitaka Yamamoto^{2,3}, Hidetomo Nabeshima², Gauvain Bourgne⁴, Anne Poupon⁵, Katsumi Inoue⁶, Christine Froidevaux¹

- ¹ Laboratoire de Recherche en Informatique, CNRS, Université Paris-Sud
- ² University of Yamanashi
- ³ JST Presto
- ⁴ LIP6, CNRS, Université Pierre et Marie Curie
- ⁵ BIOS group, INRA, CNRS
- ⁶ National Institute of Informatics

ILP'15, 15/08/20

→ Signaling networks model the flow of information in cells

1

Context

→ Signaling networks model the flow of information in cells

→ With the rise of available high-throughput data, networks always larger and more complex

Image from *http://www.bio-itworld.com*

Image from Oda *et al.* A comprehensive pathway map of epidermal growth factor receptor signaling, MSB, 2005

→ Signaling networks model the flow of information in cells

- → With the rise of available high-throuput data, networks always larger and more complex
- Automatic methods based on Systems Biology standards are necessary for their analysis

→ Signaling networks model the flow of information in cells

- → With the rise of available high-throuput data, networks always larger and more complex
- → Automatic methods based on Systems Biology standards are necessary for their analysis

In particular, methods that allow to **complete** signaling networks using **experimental results**

The completion problem

→ Take as input an interaction graph and steady-state shift or perturbation experiment results

Image from Gebser *et al. Repair and Prediction (under Inconsistency) in Large Biological Networks with Answer Set Programming,* KR, 2010

The completion problem

- → Take as input an interaction graph and steady-state shift or perturbation experiment results
- → For every experimental result, check if the result can be explained by the graph
- → If not, find hypotheses that complete the network so that the result can be explained

The completion problem

- → Take as input an interaction graph and steady-state shift or perturbation experiment results
- → For every experimental result, check if the result can be explained by the graph
- → If not, find hypotheses that complete the network so that the result can be explained
- Different semantics/frameworks : signaling paths (Klamt et al. 2006), Sign Consistency Model (Siegel et al. 2006), Causality networks (Inoue et al. 2013, Yamamoto et al. 2014)
- → Different formalisms : graph theory (Samaga et al. 2009), integer linear programming (Melas et al. 2013), answer set programming (Gebser et al. 2010), first-order logic (Inoue et al. 2013, Yamamoto et al. 2014)

A method that:

→ Takes as input a SBGN-AF network and perturbation experiments

→ Uses a path definition that extends signaling paths

→ Realizes both explanation and completion task in the same first-order logic abductive framework

A method that:

→ Takes as input a SBGN-AF network and perturbation experiments

→ Uses a path definition that extends signaling paths

→ Realizes both explanation and completion task in the same first-order logic abductive framework

Applied on the FSHR-induced signaling network

A standard: the SBGN-AF language ⁴

- → The Systems Biology Graphical Notation Activity Flow langage is a standard to represent biological networks
- → Widely used in a number of softwares (e.g. CellDesigner) and databases (e.g. BioModels)
- → It extends classical interaction graphs with logical operators

A standard: the SBGN-AF language ⁴

- → The Systems Biology Graphical Notation Activity Flow langage is a standard to represent biological networks
- → Widely used in a number of softwares (e.g. CellDesigner) and databases (e.g. BioModels)
- → It extends classical interaction graphs with logical operators

Translation proposed in: Rougny *et al. Analizing SBGN-AF Networks using Normal Logic Programs,* In Handbook Logical Modeling of Biological Systems, 2014 → We introduce two predicates :

stimulates • (A,B) : there is a positive path between A and B

inhibits•(*A*,*B*) : there is a negative path between *A* and *B*

→ We introduce two predicates :

stimulates • (A,B) : there is a positive path between A and B

inhibits•(*A*,*B*) : there is a negative path between *A* and *B*

- ➔ Two predicates defined by 12 transitivity rules formalized in FOL
- → No constraints: *stimulates* (*A*,*B*) ∧ *inhibits* (*A*,*B*) is consistent
- → Takes into account logical operators

Paths in SBGN-AF maps

General axioms

- $stimulates(A, B) \to stimulates^{\bullet}(A, B)$ (1)
 - $inhibits(A, B) \to inhibits^{\bullet}(A, B)$ (2)
- $stimulates^{\bullet}(A, B) \land stimulates(B, C) \rightarrow stimulates^{\bullet}(A, C)$ (3)
 - $inhibits^{\bullet}(A, B) \wedge inhibits(B, C) \rightarrow stimulates^{\bullet}(A, C)$ (4)
 - $stimulates^{\bullet}(A, B) \wedge inhibits(B, C) \rightarrow inhibits^{\bullet}(A, C)$ (5)
 - $inhibits^{\bullet}(A,B) \wedge stimulates(B,C) \rightarrow inhibits^{\bullet}(A,C)$ (6)

Paths in SBGN-AF maps

General axioms

- $stimulates(A, B) \to stimulates^{\bullet}(A, B)$ (1)
 - $inhibits(A, B) \to inhibits^{\bullet}(A, B)$ (2)
- $stimulates^{\bullet}(A, B) \land stimulates(B, C) \rightarrow stimulates^{\bullet}(A, C)$ (3)
 - $inhibits^{\bullet}(A, B) \wedge inhibits(B, C) \rightarrow stimulates^{\bullet}(A, C)$ (4)
 - $stimulates^{\bullet}(A, B) \wedge inhibits(B, C) \rightarrow inhibits^{\bullet}(A, C)$ (5)
 - $inhibits^{\bullet}(A,B) \wedge stimulates(B,C) \rightarrow inhibits^{\bullet}(A,C)$ (6)

Axioms for the AND operator

- $and(O) \wedge input(A, B, O) \wedge stimulates^{\bullet}(C, A) \wedge stimulates^{\bullet}(C, B) \rightarrow stimulates^{\bullet}(C, O)$ (7)
 - $and(O) \wedge input(A, B, O) \wedge inhibits^{\bullet}(C, A) \rightarrow inhibits^{\bullet}(C, O)$ (8)
 - $and(O) \wedge input(A, B, O) \wedge inhibits^{\bullet}(C, B) \rightarrow inhibits^{\bullet}(C, O)$ (9)

Paths in SBGN-AF maps

General axioms

- $stimulates(A, B) \to stimulates^{\bullet}(A, B)$ (1)
 - $inhibits(A, B) \to inhibits^{\bullet}(A, B)$ (2)
- $stimulates^{\bullet}(A, B) \wedge stimulates(B, C) \rightarrow stimulates^{\bullet}(A, C)$ (3)
 - $inhibits^{\bullet}(A,B) \wedge inhibits(B,C) \rightarrow stimulates^{\bullet}(A,C)$ (4)
 - $stimulates^{\bullet}(A, B) \wedge inhibits(B, C) \rightarrow inhibits^{\bullet}(A, C)$ (5)
 - $inhibits^{\bullet}(A,B) \wedge stimulates(B,C) \rightarrow inhibits^{\bullet}(A,C)$ (6)

Axioms for the AND operator

- $and(O) \wedge input(A, B, O) \wedge stimulates^{\bullet}(C, A) \wedge stimulates^{\bullet}(C, B) \rightarrow stimulates^{\bullet}(C, O)$ (7)
 - $and(O) \wedge input(A, B, O) \wedge inhibits^{\bullet}(C, A) \rightarrow inhibits^{\bullet}(C, O)$ (8)
 - $and(O) \wedge input(A, B, O) \wedge inhibits^{\bullet}(C, B) \rightarrow inhibits^{\bullet}(C, O)$ (9)

Axioms for the OR operator

- $or(O) \wedge input(A, B, O) \wedge stimulates^{\bullet}(C, A) \rightarrow stimulates^{\bullet}(C, O)$ (10)
- $or(O) \wedge input(A, B, O) \wedge stimulates^{\bullet}(C, B) \rightarrow stimulates^{\bullet}(C, O)$ (11)
- $or(O) \wedge input(A, B, O) \wedge inhibits^{\bullet}(C, A) \wedge inhibits^{\bullet}(C, B) \rightarrow inhibits^{\bullet}(C, O)$ (12)

alC ----- aKO ------ aT if
$$e=\uparrow$$

alC ------ aKO ------ aT if
$$e=\uparrow$$

alC ------ aKO ------- aT if
$$e=\uparrow$$

$$O_{\mathcal{E}} = \bigvee_{a_{KO} \in \mathcal{KO}} \begin{bmatrix} (stimulates^{\bullet}(a_{\mathcal{IC}}, a_{KO}) \land inhibits^{\bullet}(a_{KO}, a_{T})) \lor \\ (inhibits^{\bullet}(a_{\mathcal{IC}}, a_{KO}) \land stimulates^{\bullet}(a_{KO}, a_{T})) \end{bmatrix} \text{ if } e =\uparrow;$$
$$O_{\mathcal{E}} = \bigvee_{a_{KO} \in \mathcal{KO}} \begin{bmatrix} (stimulates^{\bullet}(a_{\mathcal{IC}}, a_{KO}) \land stimulates^{\bullet}(a_{KO}, a_{T})) \lor \\ (inhibits^{\bullet}(a_{\mathcal{IC}}, a_{KO}) \land inhibits^{\bullet}(a_{KO}, a_{T})) \lor \end{bmatrix} \text{ if } e =\downarrow.$$

Abductive Setting

- → S an SBGN-AF map
- ${\scriptstyle \textbf{+}} \ \mathcal{E} = (\mathcal{IC}, \mathcal{KO}, a_T, e)$ an experimental observation
- -> $B\,$ the background theory formed of the translation of ${\cal S}\,$ into predicates and axioms (1-12)
- -> $O_{\mathcal{E}}$ the observation formalized from \mathcal{E}

Abductive Setting

- → S an SBGN-AF map
- ${\boldsymbol{\twoheadrightarrow}}~ \mathcal{E} = (\mathcal{IC}, \mathcal{KO}, a_T, e)$ an experimental observation
- -> $B\,$ the background theory formed of the translation of ${\cal S}\,$ into predicates and axioms (1-12)
- -> $O_{\mathcal{E}}$ the observation formalized from \mathcal{E}

Then, solving both the explanation and the completion task consists in searching for **all minimal** sets of arcs H such that

Application to the FSHR-induced network¹⁰

Application to the FSHR-induced network

→Models the response of male and female sexual cells to FSH

10

Two pathways: the PI3K and Gαs

Application to the FSHR-induced network

→Models the response of male and female sexual cells to FSH

10

Two pathways: the PI3K and Gαs

- → Dataset of 29 experimental results
- → Completion task realized with the consequence finding software SOLAR
- Among 29 experimental results,
 - → 17 could be eplained by the network
 - → 12 remaining ones used to complete the network

Application to the FSHR-induced network ¹¹

- Each of the 12 remaining observations could be explained by adding hypotheses containing a unique arc
- → More than 250 hypotheses were generated
- → Greedy search algorithm to rank hypotheses based on the decreasing number of experimental results they allowed to explain

Application to the FSHR-induced network ¹¹

- Each of the 12 remaining observations could be explained by adding hypotheses containing a unique arc
- → More than 250 hypotheses were generated
- → Greedy search algorithm to rank hypotheses based on the decreasing number of experimental results they allowed to explain

		1	2	3	4	5	6	7
		stimulates(p38mapk,pi3k)	inhibits(p38mapk,raf1)	inhibits(p38mapk,mek)	inhibits(p38mapk,erk12)	inhibits(rps6, rap1)	inhibits(mtor,camp_epac)	inhibits(rps6,camp_epac)
1	$(\{camp, epac\}, pi3k, akt, \downarrow)$							
2	$(\{camp, epac\}, pi3k, rps6, \downarrow)$							
3	$(\{camp, epac\}, p38mapk, akt, \downarrow)$							
4	$(\{camp, epac\}, pi3k, p70s6k, \downarrow)$							
5	$(\{camp, epac\}, pi3k, rps6, \downarrow)$							
6	$({fsh_fshr,epac},pka,akt,\uparrow)$							
7	$({fsh_fshr,epac},p38mapk,akt,\downarrow)$							
8	$(\{camp,epac\},pka,p70s6k,\uparrow)$							
9	$({fsh_fshr,epac},p38mapk,erk12,\downarrow)$							
10	$({fsh_fshr,epac},camp_epac,erk12,\downarrow)$							
11	$(\{fsh_fshr,epac\},mek,p38mapk,\downarrow)$							
12	$(\{camp, epac\}, pka, akt, \uparrow)$							

Application to the FSHR-induced network ¹¹

- Each of the 12 remaining observations could be explained by adding hypotheses containing a unique arc
- → More than 250 hypotheses were generated
- → Greedy search algorithm to rank hypotheses based on the decreasing number of experimental results they allowed to explain

		1	2	3	4	5	6	7
		c,pi3k	(fl)	ek)	k12		epac)	$_{\mathrm{spac}})$
		mapk	pk,ra	pk,m	pk,er	p1)	amp_	ump_6
		(p38)	8ma	8ma	8ma	s6,r8	tor,c	s6,ce
		ates	ts(p3)	ts(p3)	ts(p3)	ts(rp)	ts(m	ts(rp
		imul	hibi	hibi	hibi	hibi	hibi	hibi
		st	.u	Е.	л.	Ξ.	л.	п.
1	$(\{camp, epac\}, pi3k, akt, \downarrow)$							
2	$(\{camp, epac\}, pi3k, rps6, \downarrow)$							
3	$(\{camp, epac\}, p38mapk, akt, \downarrow)$							
4	$(\{camp, epac\}, pi3k, p70s6k, \downarrow)$							
5	$(\{camp, epac\}, pi3k, rps6, \downarrow)$							
6	$({fsh_fshr, epac}, pka, akt, \uparrow)$							
7	$({fsh_fshr, epac}, p38mapk, akt, \downarrow)$							
8	$(\{camp, epac\}, pka, p70s6k, \uparrow)$							
9	$({fsh_fshr, epac}, p38mapk, erk12, \downarrow)$							
10	$({fsh_fshr, epac}, camp_epac, erk12, \downarrow)$							
11	$({fsh_fshr, epac}, mek, p38mapk, \downarrow)$							
12	$(\{camp, epac\}, pka, akt, \uparrow)$							

The four first hypotheses

1. stimulates(p38mapk,pi3k)

- 2. inhibits(p38mapk,raf1)
- 3. inhibits(p38mapk,mek)
- inhibits(p38mapk,erk12)

have evidence in the literature

Conclusion and prospects

- ➔ Method to complete SBGN-AF maps with perturbation experiments
- → Logical operators are taken into account
- ➔ Results on the FSHR-mediated network look promising

Conclusion and prospects

- ➔ Method to complete SBGN-AF maps with perturbation experiments
- → Logical operators are taken into account
- ➔ Results on the FSHR-mediated network look promising

➔ Better hypotheses selection

→ Deal with cycles (in particular negative cycles)

Y. Yamamoto (Yamanashi Univ.)

G. Bourgne (LIP6)

K. Inoue (NII)

Thank You !

H. Nabeshima (Yamanashi Univ.)

A. Poupon (INRA Tours)

C. Froidevaux (LRI)