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Motivations

State Transitions Model
of the Dynamics

Learning
Algorithm

Our Contribution

Time Series Data
Abstraction

Prediction

Query
Answering

Decision
Making

Planning

...

Problem:

Time series data alone may be not sufficient, we need models.

Goal:

Automated modeling of systems dynamics from these data.
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Learning From Interpretation Transitions (LFIT)

A framework for learning system dynamics from state
transitions.

Basic Idea:
Learn a logic program by observing the behavior of a system.
This logic program represents the dynamics of the system.

pqr pq p ε r

qr pr q

Input: Behavior of the system

p

q r

Output: Dynamics of the system

p(t+1)← q(t).
q(t+1)← p(t) ∧ r(t).

r(t+1)← ¬p(t).

Representation: Logic Progam
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What happens

p

q r
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Learning From k-Step Transitions (LFkT)

Motivation

Learn Systems with delayed influences: Markov(k) systems.

Extract causality from observations, why things happen.

Predict consequences of new observations, what will happen.

What is new?

Automatic computation of delays

Multi-valued variables

Real benchmark evaluation
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Logic Program

We consider a logic program as a set of rules of the form

p ← p1 ∧ · · · ∧ pm ∧ ¬pm+1 ∧ . . . ∧ ¬pn (1)

where p and pi ’s are atoms (n ≥ m ≥ 1).

Definition (Herbrand Base)

The Herbrand Base of a program P, denoted by B , is the set of all
atoms in the language of P.

Example

R1 = a← b ∧ c

R2 = b ← a ∧ c

P = {R1,R2} is a logic program

The Herbrand Base of P is B = {a, b, c}
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Formalization: Markov(k) into Logic Program

Definition (Timed Herbrand base)

Let B be the Herbrand base of a program P and k be a natural
number. The timed Herbrand base of P (with period k) denoted
by Bk , is as follows:

Bk =
k⋃

i=1

{vt−i |v ∈ B}

Where t is a constant term which represents the current time step.

Example

If the Herbrand base of a program P is B = {a, b, c} then

B1 = {at−1, bt−1, ct−1}
B2 = {at−1, bt−1, ct−1, at−2, bt−2, ct−2}
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Markov(k) Systems

A Markov(k) system can be interpreted as a logic program.

Definition (Markov(k) system)

Let P be a logic program, B be the Herbrand base of P and Bk be
the timed Herbrand base of P with period k . A Markov(k) system
S with respect to P is a logic program where for all rules R ∈ S ,
h(R) ∈ B and all atoms appearing in b(R) belong to Bk .

Example

If the Herbrand base of a program P is B = {a, b} then

B2 = {at−1, bt−1, at−2, bt−2}.
Let R1 = a← bt−1, bt−2 and R2 = b ← at−2,¬bt−2.

S = {R1,R2} is a Markov(2) system.
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Example

Let S be a Markov(k) system as follows:

S = {(a← bt−1, bt−2), (b ← at−2,¬bt−2)}

a b b

ab b a

b b a

ε b ε

b ε ε

ab ε ε

a ε b

ε ε ε

Eight traces of executions of the system S
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Example: Detection of the Delay

Let S be a Markov(k) system as follows:

S = {(a← bt−1, bt−2), (b ← at−2,¬bt−2)}

a b b

ab b a

b b a

ε b ε

b ε ε

ab ε ε

a ε b

ε ε ε

Eight traces of executions of the system S
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Multivalued Variables

In order to represent multi-valued variables, we now restrict all
atoms of a logic program to the form var val . We consider a
multi-valued logic program as a set of rules of the form

var val ← var val11 ∧ · · · ∧ var valnn (2)

where var val and var valii are atoms (n ≥ 0).

S = {(a1 ← b1
t−1, b

1
t−2), (b1 ← a1

t−2, b
0
t−2)}

10 01 01

11 01 10

01 01 10

00 01 00

01 00 00

11 00 00

10 00 01

00 00 00
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DREAM4 input data

Case studies:

5 different systems each composed of 10 genes
5 different systems composed of 100 genes
All come from E. coli and yeast networks

Data sets available for each system of 10 genes (resp. 100):

5 (resp. 10) time series data with 21 time points
Steady state at wild type, i.e. 1 steady state
Steady state after knocking out each gene, i.e. 10 steady
states (resp. 100)
Steady state after knocking down each gene (transcription rate
at 50%), i.e. 10 steady states (resp. 100)
Steady states after some random multifactorial perturbations,
i.e. 10 steady states
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DREAM4 Challenge

DATA: 5 different time series of genes expression.

GOAL:
Predict the directed unsigned interaction graph
Predict steady states from dual knockouts
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Learning phase

INPUT: 5 series of 20 transitions with different perturbations.
Approach:

Learn independently each series with LFkT.
Evaluate rules on all series (full cross-validation).

LFkT

LFkT

LFkT

LFkT

LFkT

Rules

Rules

Rules

Rules

Rules

U

Evaluate Rules
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Prediction

Evaluation
INPUT:

An initial state
5 different conditions of dual genes to be knockout
simultaneously

GOAL:
Predict the point attractor

Benchmark run time raw output final output Mean squared error
insilico size10 1 28s 118,834 359 0.073
insilico size10 2 2m5s 401,923 462 0.064
insilico size10 3 44s 151,021 480 0.019
insilico size10 4 22s 90,904 387 0.031
insilico size10 5 1m04s 297,364 326 0.091

Evaluation: precision is evaluated as the mean squared error of the
difference between predicted/expected values.
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Contribution

Extension of the LFkT algorithm

Detect delay dynamically
Handle multivalued variable

Practical methods

Automatic discretization of time series (pre-processing)
Heuristic for model simplification (post-processing)

Current & Future works

Improve performances to tackle big network (DREAM4 100)

Design method to extract the real influences
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