
Andrew Cropper and Stephen H. Muggleton

Imperial College London

 Learning efficient logical robot
strategies involving composable objects

Initial state Final state

0 1 2 3
0

1

2

3

0 1 2 3
0

1

2

3

[pos(robot,1/1),pos(ball,1/1)] [pos(robot,3/3),pos(ball,3/3)]

move(X,Y):- p3(X,Z),p3(Z,Y).
p3(X,Y):- p2(X,Z), drop(Z,Y).
p2(X,Y):- grab(X,Z), p1(Z,Y).
p1(X,Y):- north(X,Z), east(Z,Y).

move(X,Y):- p3(X,Z),drop(Z,Y).
p3(X,Y):- grab(X,Z), p2(Z,Y).
p2(X,Y):- p1(X,Z), p1(Z,Y).
p1(X,Y):- north(X,Z), east(Z,Y).

grab drop

move(X,Y):- p3(X,Z),p3(Z,Y).
p3(X,Y):- p2(X,Z), drop(Z,Y).
p2(X,Y):- grab(X,Z), p1(Z,Y).
p1(X,Y):- north(X,Z), east(Z,Y).

0 1 2 3
0

1

2

3
Inefficient solution

move(X,Y):- p3(X,Z),drop(Z,Y).
p3(X,Y):- grab(X,Z), p2(Z,Y).
p2(X,Y):- p1(X,Z), p1(Z,Y).
p1(X,Y):- north(X,Z), east(Z,Y).

0 1 2 3
0

1

2

3
Efficient solution

grab drop

0 1 2 3
0

1

2

3
Inefficient solution

0 1 2 3
0

1

2

3
Efficient solution

Action drop grab north east
Cost 2 2 1 1

resource complexity: 12 resource complexity: 8

Iterative descent

1. find first consistent solution with minimal textual
complexity

2. repeat until convergence:
A. calculate resource complexity of learned solution
B. learn new solution with a maximum resource bound

that is smaller than the resource complexity of the
previous solution

Theorem: guaranteed to converge to
minimal resource complexity hypothesis

MetagolO

Implementation of meta-interpretive learning*, a form
of inductive logic programming based on a Prolog
meta-interpreter, which supports predicate invention
and the learning of recursive theories

* S.H. Muggleton, D. Lin, and A. Tamaddoni-Nezhad. Meta-interpretive learning
of higher-order dyadic datalog: Predicate invention revisited. Machine
Learning, 100(1):49-73, 2015.

Actions: go_to_bottom/2, go_to_top/2, find_next_sender/2,
find_next_recipient/2, take_letter/2, give_letter/2, bag_letter/2

Initial state

L1

L2

L1

L2

Final state

2 4 6 8 10
0

200

400

600

800

1,000

No. objects

M
e
a
n

r
e
s
o

u
r
c
e

c
o

m
p

l
e
x

i
t
y

MetagolO

MetagolD

Composable tight bound 2(n + d)

Non-composable tight bound n(2d + 2)

Actions:
comp_adjacent/2
decrement_end/2
go_to_start/2
pick_up_left/2
split/2
combine/2

Initial state
[2,5,6,1,9,7,3,4,8]

Final state
[1,2,3,4,5,6,7,8,9]

20 40 60 80 100

0

1,000

2,000

3,000

4,000

5,000

List length

M
e
a
n

r
e
s
o
u
r
c
e

c
o
m

p
l
e
x
i
t
y

MetagolO

MetagolD

Tight bound n log n

Tight bound n(n-1)/2

Conclusions
• Suggests that we can build delivery and sorting robots

which learn resource efficient strategies from examples

Future work
• Optimise the iterative descent search procedure
• Generalise to a broader class of logic programs

Thank you

