Mine 'Em All: A Note on (Complexity of) Mining All Graphs

Ondřej Kuželka¹ and Jan Ramon² ¹Cardiff University, ²KU Leuven

Question

• When can graph mining with an intractable pattern matching operator be fast?

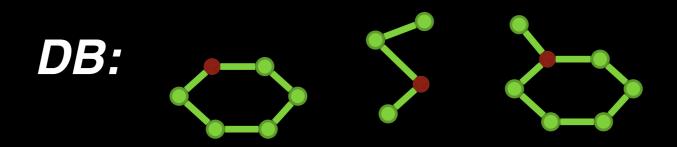
 Motivation: Horváth & Ramon have shown that frequent bounded-treewidth graphs can be mined in incrementalpolynomial time even though subgraph isomorphism is NP-hard for them.

Preliminaries

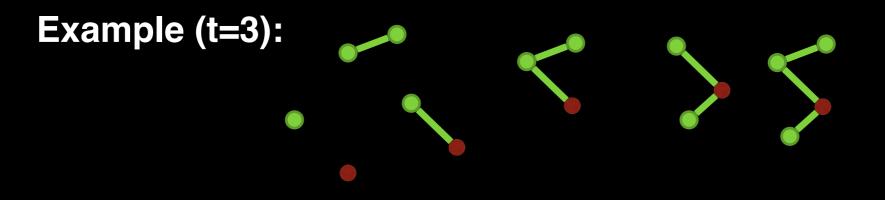
Isomorphism • Subgraph isomorphism: + other matching operators • (homeomorphism, minor embedding, induced operators...)

Frequent Graph Mining

• **Given:** a database *DB* of graphs and a frequency threshold *t*



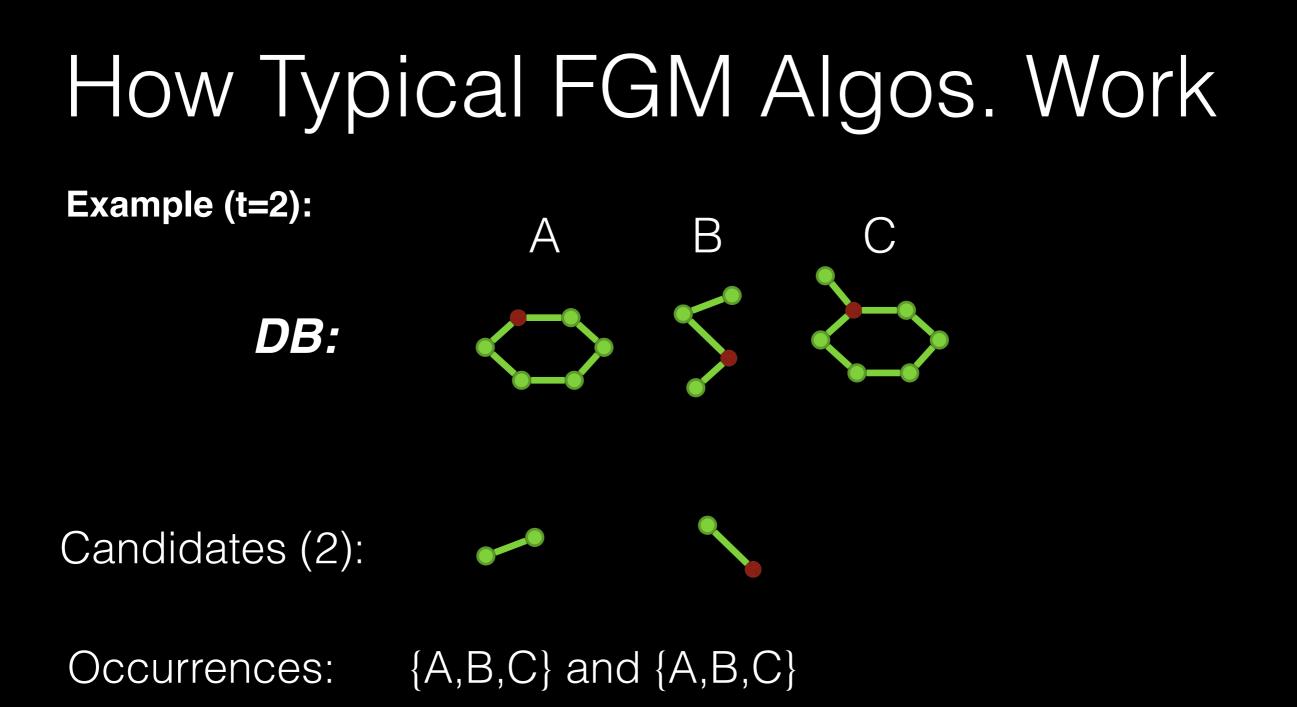
• **Task:** Output all nonisomorphic connected graphs subgraph isomorphic to at least *t* graphs from *DB*.

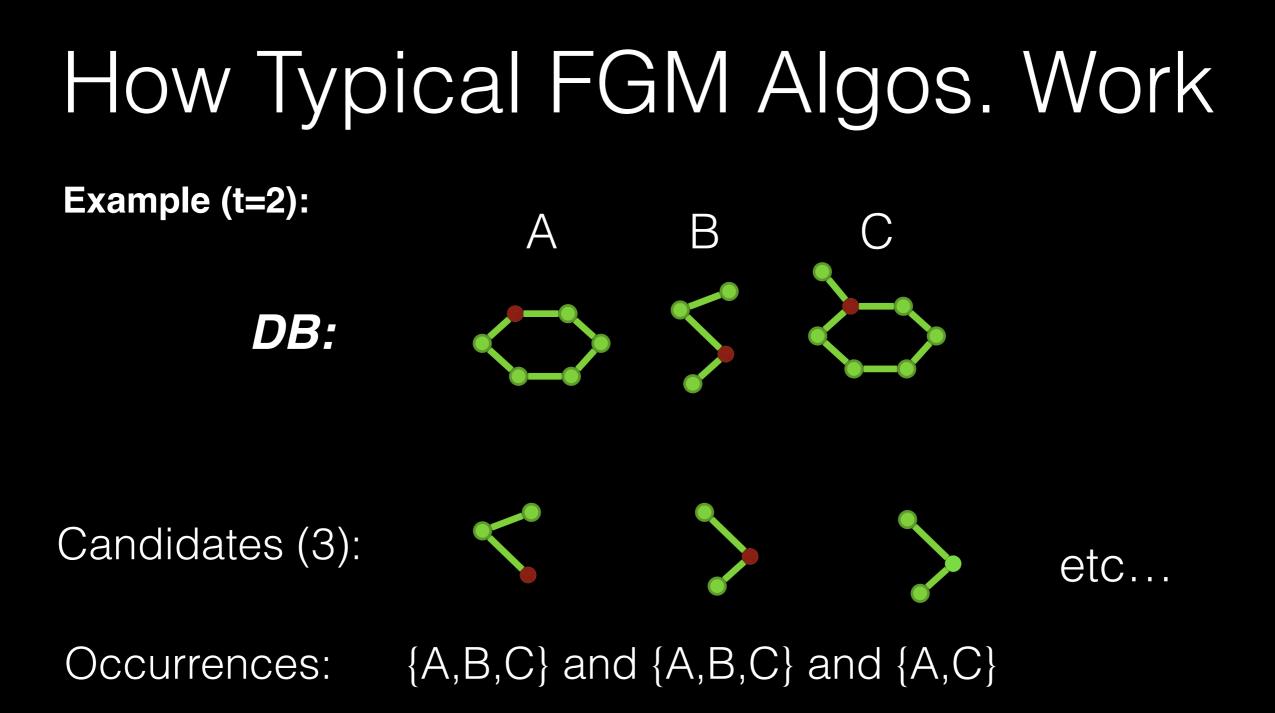


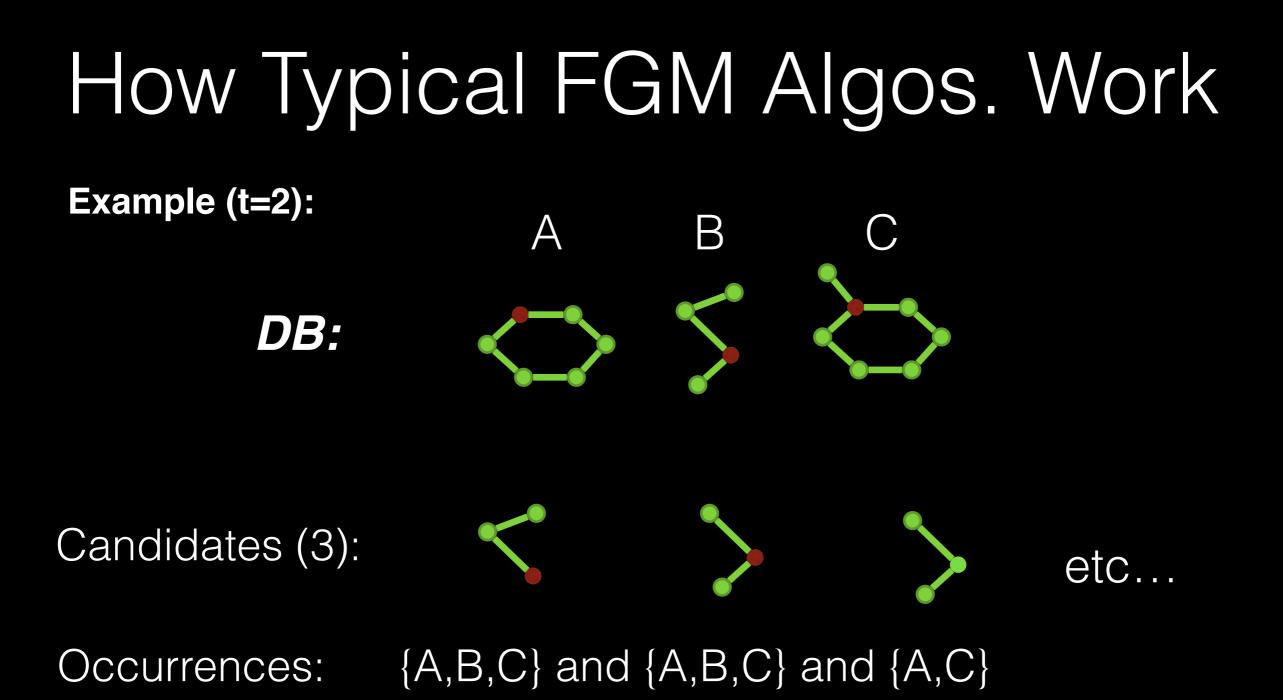
How Typical FGM Algos. Work Example (t=2): A B C DB: C

Candidates (1):

Occurrences: {A,B,C} and {A,B,C}







Such an algorithm needs to be able to:

- remove isomorphic candidates (iso. not known to be in P)
- compute occurrences using subgraph isomorphism (NP-hard)

Complexity of FGM

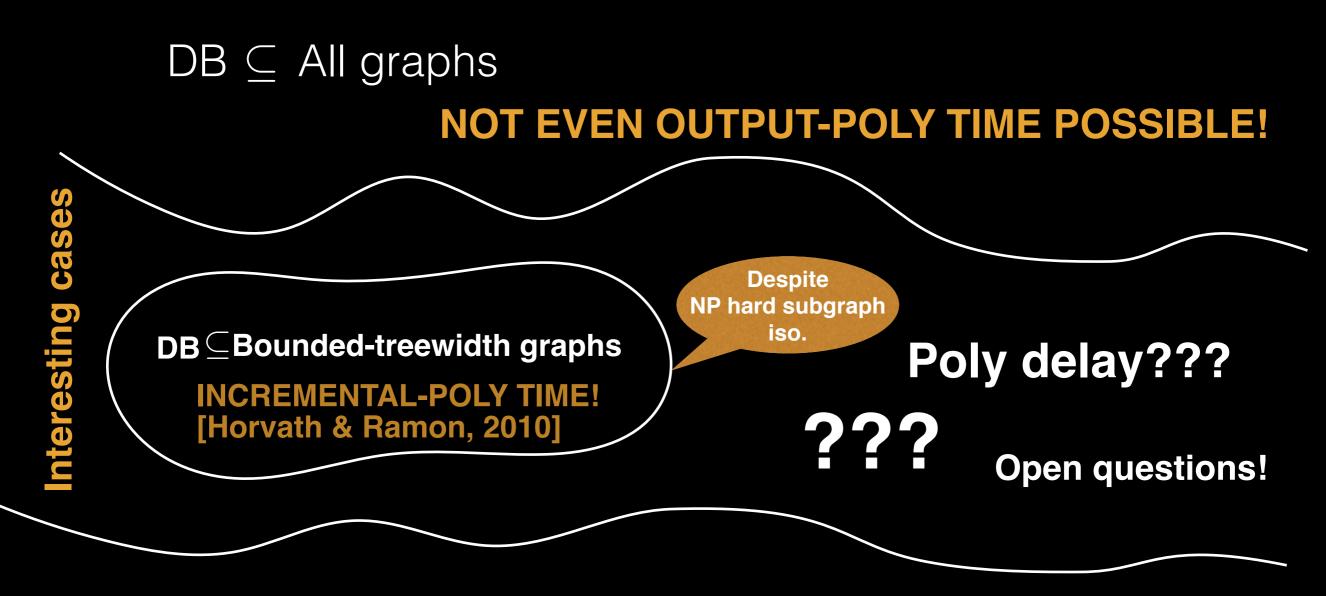
Complexity measures:

implies

implies

- Polynomial delay: if the time between printing the next fr. graph (or terminating) is bounded by a polynomial of the size of input,
- Incremental polynomial time: if the time between printing next fr. graph (or terminating) is bounded by a polynomial of the size of input and of the size of output so far,
- **Output polynomial time:** if the algorithm finishes in time polynomial in the combined size of input and the entire output.

Known Results



 $DB \subseteq$ Hereditary graph classes with poly-time subgraph iso.

POLY DELAY!

Change of Perspective

- A more general problem (Ordered graph mining):
 - Output all nonisomorphic connected graphs with frequency at least 1 and their occurrences in DB (*i.e. which DB graphs they match by subgraph iso.*):
 - F -> I: from frequent to infrequent (generalizes FGM)
 - I -> F: from infrequent to frequent (generalizes IGM)
 - S -> L: from smallest to largest
 - L -> S: from largest to smallest

(If you cannot solve a problem, George Pólya in "How to Solve It" suggests studying a more general problem.)

Available Results

(From correspondence between FGM and F -> I)

	All Graphs	Planar Graphs	Bounded- Treewidth Graphs
S -> L	??	??	IncPoly [Horvath and Ramon, 2010]
L -> S	??	??	??
F -> I	Not IncPoly unless P=NP [known]	??	IncPoly [Horvath and Ramon, 2010]
I -> F	??	??	??

New Results and Corollaries

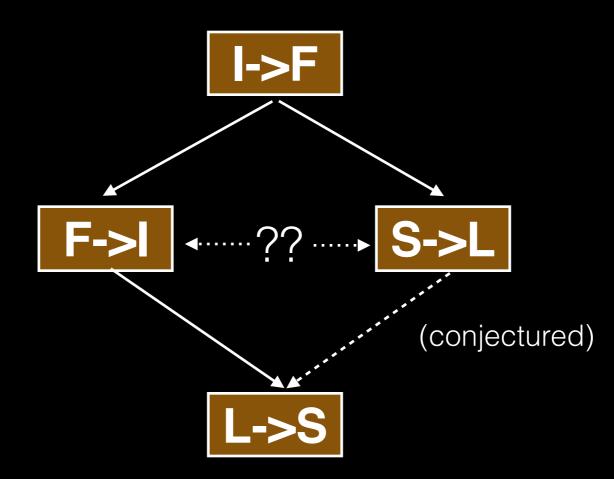
Corollaries of our theorems

	All Graphs	Planar Graphs	Bounded- Treewidth Graphs	
S -> L	Not IncPoly unless FPT = W[1]	??	IncPoly [Horvath and Ramon, 2010]	
L -> S	IncrPoly iff GI in P, Poly delay if CANON in P	Poly delay	Poly delay	tive
F -> I	Not IncPoly unless P=NP [known]	Not IncPoly unless P=NP	IncPoly [Horvath and Ramon 2010]	tive
I -> F	Not IncPoly unless P=NP	Not IncPoly unless P=NP	Not IncPoly unless P=NP	

(More general results in the paper.)

Relative Hardness

• Difficulty of the problems for the considered classes of graphs:



Large to Small (Details)

Require: database DB of transaction graphs

Ensure: all connected (induced) subgraphs and their occurrences

- 1: let ALL be a data structure for storing graphs and their occurrences (as described in the main text).
- 2: for $G \in DB$ do
- $ADD(G, \{ID(G)\}, ALL)$ 3:
- 4: endfor
- 5: let m be the maximum order¹ of a graph in DB.
- 6: for (l := m; l > 0; l := l 1) do
- for $H \in \mathsf{KEYS}(l, ALL)$ do 7:
- $OCC \leftarrow \mathsf{GET}(H, ALL)$ 8:
- $\mathsf{PRINT}(H, OCC)$ 9:
- for $H' \in \mathsf{REFINE}(H)$ do 10:
- if H' is connected then 11:12:
 - $\mathsf{ADD}(H', OCC, ALL)$
- endif 13:
- endfor 14:
- endfor 15:
- $\mathsf{DELETE}(l, ALL)$ 16:

17: endfor

- Simple, yet poly-delay algorithm for bounded TW graphs, planar graphs,
- It achieves poly-delay with NP-hard pattern matching operators and even if FGM cannot be solved in output-poly time (planar graphs).
- It may be combined with constraints such as maximum graph diameter which even leads to practical algorithms
- It can be generalised to (induced) homeomorphism and (induced) minor emb.

Conclusions

- Theory:
 - New results for complexity of graph mining with NP-hard pattern matching operators (some pretty surprising).
 - We have proved analogical results for induced subgraph isomorphism, (induced) homeomorphism and (induced) minor embedding
- Practice:
 - Both the **positive** and **negative** results give guidelines e.g. for developing practical subgraph kernels.
 - Larger-to-smaller algorithm:
 - practically useful for mining subgraphs of bounded diameter
 - surprisingly also useful for mining all induced subgraphs of molecules of up to 25 non-hydrogen atoms (+ bigger molecules with additional hacks)

Thank you!