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A simple FOL-based neural network model – an example program:

1: brightTetrahedron(A,B,C,D) :- brightTriangle(A,B,C),  brightTriangle(A,B,D), 
brightTriangle(B,C,D), brightTriangle(A,C,D).
1: brightTriangle(X,Y,Z) :- bright(X), bright(Y), bright(Z), edge(X,Y), edge(Y,Z), edge(Z,X).
0.1: brightTriangle(X,Y,Z) :- bright(W), bright(X), bright(Y), bright(Z), edge(X,W), edge(W,Y), 
edge(Y,Z), edge(Z,X). /* A rectangle is almost a triangle too :) */
0.1: bright(blue).
1: bright(green).
2: bright(yellow).
2: bright(white).

Semantics:

1. Value of a ground fact is a parameter (the number on the left)
2. Output of a true ground Horn clause C = h :- b

1
,...,b

k
 is given as:

output(C)= sigmoid(value(b
1
)+...+value(b

k
)-k)

3. Output of a false ground clause is 0.
4. Value of a ground atom A with predicate h is given as follows:

- Let Cs ={C
1
,...,C

m
}be the set of all Horn clauses with h in the head.

- Let Gr(C
i
) denote the set of all true groundings of C

i
 with the ground atom A in the head.

- Then 
value(A) = sigmoid(w

C1 
max

C1 in Gr(C1)
output(C

1
)+...+w

Ck
 max

Ck in Gr(Ck)
output(C

k
)+w

0

A)

5. Value of an atom A is the maximum of the values of its groundings.

Examples of 'brightTetrahedrons(A,B,C,D)':

0

x
1

x
2

x
1
>x

2
>0

Intuitively, we want 

this to hold.

This can be seen as a template for feed-forward neural networks.
The ground network can be constructed as follows from a logic program with weights and a 
query atom (in practice, we use an optimized algorithm which utilizes caching, branch-and-
bound, forward-checking etc., this is just for illustration):

Procedure constructNetworkForClause(C = h:-b
1
, …, b

k
)

best := NULL
'OuterLoop': For each grounding  θ of C

node := a neuron with no inputs and bias equal to -k
For i = 1, …, k

subnetwork = ConstructNetworkForAtom(bθ
i
)

If subnetwork == NULL Or subnetwork.evaluate() == 0
Continue to 'OuterLoop'

Else

Connect subnetwork to node (weight 1)
EndIf

EndFor

If node is better than best
best := node

EndIf
EndFor
Return best

Procedure constructNetworkForGroundAtom(a = 
p(c1,...,ck)

node := a neuron with no inputs and bias w
0

p

For each clause C = p(X1,...,Xk) :- b1, ..., b_m
Let θ be minimal such that p(X1,...,Xk)θ = 

p(c1,...,ck)
subnetwork = constructNetworkForClause(C)
If subnetwork.evaluate() != 0

Connect subnetwork to node with the weight 
specified for C in the program

EndIf
EndFor
Return node

Parameter learning:

Parameter learning is done by repeating the following steps:

1. Construct neural networks for every program H+e
i
 where H is a hypothesis e

i
 is a learning 

example
2. Check if the stopping criterion is met and if so, finish.
3. Perform online backpropagation for a given number of steps for each of the networks 
(updating the shared weights – note that the networks for different examples in the dataset 
can be different but they share some weights).
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Some preliminary experiments:

Experiments were performed on chemical data. The 
structure was selected so that the program would have 
to induce soft clusterings of atom and bond types 
relevant for the respective datasets.

w
toxic1

: toxic :- bond(A1,A2,B1), bond(A2,A3,B2), 

atg1(A1), atg2(A2),atg3(A3), bg1(B1), bg2(B2).
w

toxic2
: toxic :- bond(A1,A2,B1), bond(A2,A3,B2), 

atg1(A1), atg2(A2),atg3(A3), bg1(B1), bg3(B2).
w

toxic3
: toxic :- bond(A1,A2,B1), bond(A2,A3,B2), 

atg1(A1), atg2(A2),atg3(A3), bg2(B1), bg3(B2).
…
...
w

atg11
: atg1(X) :- atm(X,carbon)

w
atg12

: atg1(X) :- atm(X,hydrogen)

w
atg13

: atg1(X) :- atm(X,nitrogen)

…
...
w

atg21
: atg2X) :- atm(X,carbon)

w
atg22

: atg2(X) :- atm(X,hydrogen)

w
atg23

: atg2(X) :- atm(X,nitrogen)

…
…
...quite large network!

Already with this simple model, we were able to obtain 
competitive accuracies to nFOIL for PTC and 
Mutagenesis.

Future work:

1. Experiments with datasets where the ability to 
construct useful soft concepts (clusters) is expected to 
be useful

2. Structure learning

3. Make it deep
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Question
• When can graph mining with an intractable 

pattern matching operator be fast?

• Motivation: Horváth & Ramon have shown that frequent 
bounded-treewidth graphs can be mined in incremental-
polynomial time even though subgraph isomorphism is 
NP-hard for them. 



Preliminaries
• Isomorphism

• Subgraph isomorphism:

• + other matching operators  
(homeomorphism, minor embedding, induced operators…)

~

4



Frequent Graph Mining
• Given: a database DB of graphs and a frequency threshold t 

• Task: Output all nonisomorphic connected graphs 
subgraph isomorphic to at least t graphs from DB.

DB:

Example (t=3):



How Typical FGM Algos. Work
Example (t=2):

DB:

Candidates (1):

A B C

Occurrences:      {A,B,C} and {A,B,C}



How Typical FGM Algos. Work
Example (t=2):

DB:

Candidates (2):

A B C

Occurrences:      {A,B,C} and {A,B,C}



How Typical FGM Algos. Work
Example (t=2):

DB:

Candidates (3):

A B C

Occurrences:      {A,B,C} and {A,B,C} and {A,C}

etc…



How Typical FGM Algos. Work
Example (t=2):

DB:

Candidates (3):

A B C

Occurrences:      {A,B,C} and {A,B,C} and {A,C}

etc…

Such an algorithm needs to be able to: 
• remove isomorphic candidates (iso. not known to be in P) 
• compute occurrences using subgraph isomorphism (NP-hard)



Complexity of FGM
• Complexity measures:

• Polynomial delay: if the time between printing the next fr. 
graph (or terminating) is bounded by a polynomial of the size of 
input, 

• Incremental polynomial time: if the time between printing next 
fr. graph (or terminating) is bounded by a polynomial of the size 
of input and of the size of output so far, 

• Output polynomial time: if the algorithm finishes in time 
polynomial in the combined size of input and the entire output. 

im
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Known Results

✓DB Hereditary graph classes with poly-time subgraph iso.

POLY DELAY!

✓DB All graphs
NOT EVEN OUTPUT-POLY TIME POSSIBLE!

Bounded-treewidth graphs
INCREMENTAL-POLY TIME!
✓DB

Despite 
NP hard subgraph 

iso.

[Horvath & Ramon, 2010] ???
Poly delay???

In
te

re
st

in
g 

ca
se

s

Open questions!



Change of Perspective
• A more general problem (Ordered graph mining):

• Output all nonisomorphic connected graphs with 
frequency at least 1 and their occurrences in DB (i.e. 
which DB graphs they match by subgraph iso.): 

• F -> I: from frequent to infrequent (generalizes FGM) 
• I -> F: from infrequent to frequent (generalizes IGM) 
• S -> L: from smallest to largest 
• L -> S: from largest to smallest

(If you cannot solve a problem, George Pólya in “How to Solve It” 
suggests studying a more general problem.)



Available Results

All Graphs Planar Graphs
Bounded-
Treewidth 

Graphs

S -> L ?? ?? IncPoly [Horvath 
and Ramon, 2010]

L -> S ?? ?? ??

F -> I Not IncPoly unless 
P=NP [known] ?? IncPoly [Horvath 

and Ramon, 2010]

I -> F ?? ?? ??

(From correspondence between FGM and F -> I)



New Results and Corollaries

All Graphs Planar Graphs
Bounded-
Treewidth 

Graphs

S -> L Not IncPoly unless 
FPT = W[1] ?? IncPoly [Horvath 

and Ramon, 2010]

L -> S
IncrPoly iff GI in P,

Poly delay if 
CANON in P

Poly delay Poly delay

F -> I Not IncPoly unless 
P=NP [known]

Not IncPoly unless 
P=NP

IncPoly [Horvath 
and Ramon, 2010]

I -> F Not IncPoly unless 
P=NP

Not IncPoly unless 
P=NP

Not IncPoly unless 
P=NP

Corollaries of our theorems

Positive

Negative

(More general results in the paper.)



Relative Hardness
• Difficulty of the problems for the considered classes of graphs:

L->S

I->F

F->I S->L

(conjectured)

??



Large to Small (Details)
Require: database DB of transaction graphs

Ensure: all connected (induced) subgraphs and their occurrences

1: let ALL be a data structure for storing graphs and their occurrences (as

described in the main text).

2: for G 2 DB do

3: ADD(G, {ID(G)}, ALL)
4: endfor

5: let m be the maximum order

1
of a graph in DB.

6: for (l := m; l > 0; l := l � 1) do

7: for H 2 KEYS(l, ALL) do
8: OCC  GET(H,ALL)
9: PRINT(H,OCC)

10: for H 0 2 REFINE(H) do

11: if H 0
is connected then

12: ADD(H 0, OCC,ALL)
13: endif

14: endfor

15: endfor

16: DELETE(l, ALL)
17: endfor

1Here, order of a graph G, denoted by |G|. is either |V (G)|+ |E(G)| for subgraph mining
or |V (G)| for induced subgraph mining.

• Simple, yet poly-delay algorithm for bounded 
TW graphs, planar graphs, …. 

• It achieves poly-delay with NP-hard pattern 
matching operators and even if FGM cannot be 
solved in output-poly time (planar graphs). 

• It may be combined with constraints such as 
maximum graph diameter which even leads to 
practical algorithms 

• It can be generalised to (induced) 
homeomorphism and (induced) minor emb.



Conclusions
• Theory:

• New results for complexity of graph mining with NP-hard pattern 
matching operators (some pretty surprising). 

• We have proved analogical results for induced subgraph 
isomorphism, (induced) homeomorphism and (induced) minor 
embedding

• Practice:
• Both the positive and negative results give guidelines e.g. for 

developing practical subgraph kernels. 
• Larger-to-smaller algorithm:  

• practically useful for mining subgraphs of bounded diameter  
• surprisingly also useful for mining all induced subgraphs of 

molecules of up to 25 non-hydrogen atoms (+ bigger molecules 
with additional hacks)



Thank you!


