
A Case Study on Extracting the Characteristics
of the Reachable States of a State Machine
formalizing a Communication Protocol with

Inductive Logic Programing

Dung Tuan Ho∗, Min Zhang∗∗, and Kazuhiro Ogata∗

∗Japan Advanced Institute of Science and Technology (JAIST)
{dung.ho,ogata}@jaist.ac.jp

∗∗East China Normal University (ECNU)
zhmtechie@gmail.com

Abstract. A distributed system DS can be formalized as a state ma-
chine M and many desired properties of DS can be expressed as invari-
ants of M . An invariant of M is a state predicate p of M such that p
holds for all reachable states of M . To verify that DS enjoys a desired
property, namely to prove that p is an invariant of M , we often need
to find other invariants as lemmas, which is one of the most intellectual
activities in Interactive Theorem Proving (ITP). For this end, our expe-
riences on ITP tell us that it is useful to get better understandings of the
reachable states RM of M . We report on a case study in which Progol,
an Inductive Logic Programming (ILP) system, has been used to extract
the characteristics of the reachable states of a state machine formaliz-
ing Alternating Bit Protocol, a communication protocol. The case study
demonstrates that ILP is useful to extract the characteristics of RM .

Keywords: Alternating Bit Protocol, invariant, Inductive Logic Pro-
gramming, Progol, state machine, reachable states

1 Introduction

A state machine consists of a set of states that includes the initial states and a
binary relation over states. An element of the binary relation is called a tran-
sition. A distributed system DS can be formalized as a state machine M and
many desired properties of DS can be expressed as invariants of M. An invariant
of M is a state predicate p of M such that p holds for all reachable states of M .
Reachable states of M are inductively1 defined as follows: each initial state of
M is reachable, and if a state s of M is reachable and (s, s′) is an element of the
binary relation of M , then s′ is reachable.

To prove that p is an invariant of M , it suffices to to find an inductive
invariant q of M such that q(s) ⇒ p(s) for each state s of M . An inductive

1 Note that ”induction” is used to refer to two different meanings: one from ILP and
the other from mathematical induction.

2 A Case Study on Extracting the Characteristics of the Reachable States

invariant q of M is a state predicate of M such that q(s0) holds for each initial
state s0 of M and q(s)⇒ q(s′) holds for each element (s, s′) of the binary relation
of M. Note that an inductive invariant of M is an invariant of M but not vice
versa.

Finding such inductive invariant q (or conjecturing a lemma q) is one of the
most intellectual activities in ITP2. This activity requires human users to pro-
foundly understand the system under verification or M formalizing the system
to some extent. The users must rely on some reliable sources that let them get
better understandings of the system and/or M to conduct the non-trivial task,
namely lemma conjecturing. For this end, our experiences on ITP tell us that
it is useful to get better understandings of the reachable state RM of M . Some
characteristics of RM can be used to systematically construct a state predicate
qi that is a part of q.

States in M are characterized by some values that are called observable val-
ues. Based on our experiences on ITP, the characteristics of RM are correlations
among observable values of the elements (the reachable states of M) of RM .
Generally, the number of the elements of RM is unbounded and then a huge
number of reachable states are generated from M . The task of extracting corre-
lations among a huge number of data (reachable states in our case) is the role
of Machine Learning (ML).

We have conducted a case study in which Progol, an ILP system, has been
used to extract the characteristics of the reachable states RMABP of a state
machine MABP formalizing Alternating Bit Protocol (ABP) that is a simplified
version of Sliding Window Protocol used in TCP. The reasons why we have
used ABP in the case study are that we have verified that ABP enjoys some
desired property with ITP and extracted the characteristics of a RMABP

. In the
case study, we have made a comparison between the characteristics extracted
by Progol and those manually extracted, demonstrating that Progol is able to
extract many interesting characteristics of RMABP .

The rest of the paper is organized as follows. Sect. 2 describes what motivated
us to extract the characteristics of RM with ILP. Sect. 3 describes ABP, MABP

and manually extracted characteristics of RMABP
. Sect. 4 describes our method

to extract the characteristics of RM with ILP and reports on the case study.
Sect. 5 mentions some related work. Sect. 6 concludes the paper and mentions
some future direction.

2 Motivation

2.1 Systems Verification with Interactive Theorem Proving (ITP)

System verification is a research area aiming at rigorously checking if systems
satisfy desired properties. ITP is a formal verification technique in which mathe-

2 q may be in the form q1∧. . .∧qn. Each qi may be called a lemma and is an invariant of
M if q is an inductive invariant of M , although qi may not be an inductive invariant
of M .

A Case Study on Extracting the Characteristics of the Reachable States 3

matical models are made for systems and desired properties are treated as theo-
rems of the mathematical models. State machines are used as such mathematical
models. For example, it is possible to check if an e-commerce protocol satisfies
the property that if an acquirer authorizes a payment, then both the buyer and
seller concerned always agree on it [1]. Logics, theories, techniques and tools
for theorem proving have been advanced a lot, e.g. logical decision procedures
used in SMT [2]. However, some non-trivial interactions between human users
and theorem provers are still needed to conduct proofs that non-trivial state
machines enjoy non-trivial properties. One of the most intellectual activities in
such interactions is to conjecture lemmas.

To formally verify that a system satisfies a desired property with ITP, the
system is first formalized as a state machine M that is described in a formal
specification language. A state predicate p is described in the same or a dif-
ferent specification language for the property. An interactive theorem prover is
used to prove that p is an invariant of M . We use a proof score approach to
systems verification called the OTS/CafeOBJ method3, in which CafeOBJ, an
algebraic specification language, is used as a specification language for M and p
and also as an interactive theorem prover. There are three main activities in the
OTS/CafeOBJ method to conduct ITP: application of simultaneous structural
induction, case analysis and use of lemmas (including lemma conjecturing).

Let us consider a mutual exclusion protocol called TAS as an example. TAS
written in an Algol-like language is shown in Fig. 1 (a). TAS uses lock to control
processes such that there is at most one process in Critical Section (or at cs). Ini-
tially, lock is false and each process is in Remainder Section (or at rs). test&set(b)
atomically sets b true and returns false if b is false, and just returns true other-
wise. TAS is formalized as a state machine MTAS whose transitions are depicted
in Fig. 1 (b) and (c). The arrow on which tryi/[b = false] is attached is inter-
preted as follows: if process i is at rs and b is false in a given state, then i moves
to cs and b is set true. Note that transitions are declared in terms of equations in
the OTS/CafeOBJ method. One desired property TAS should enjoy is the mu-
tual exclusion property. Let mx(s, p, q) be (pc(s, p) = cs∧pc(s, q) = cs⇒ p = q),
where s is a state, p, q are process identifiers and pc(s, x) is the location (rs or
cs) where process x is in state s, and let mx(s) be (∀p, q ∈ Pid) mx(s, p, q),
where Pid is the set of all process identifications. To verify that TAS enjoys the
property, all we have to do is to prove that mx(s) is an invariant of MTAS.

Fig. 2 shows a snip of a proof tree that mx(s) is an invariant of MTAS, al-
though proofs are written as texts in the OTS/CafeOBJ method. Given a state s
and a process identification r, try(s, r) is the state obtained by applying transi-
tion tryr in s, exit(s, r) is the state obtained by applying transition exitr in s, and
lock(s) is the Boolean value stored in variable lock in s. Simultaneous structural
induction on s is first used to split the initial goal into three sub-cases. What to
do for the three sub-cases is to show mx(s0, p, q), mx(s, p, q)⇒ mx(try(s, r), p, q)
and mx(s, p, q)⇒ mx(exit(s, r), p, q), respectively, where s0 is an arbitrary initial

3 Due to the space limitation, we do not explain the OTS/CafeOBJ method in detail.
Please refer to [3, 4] for the OTS/CafeOBJ method

4 A Case Study on Extracting the Characteristics of the Reachable States

Fig. 1. TAS and a state machine MTAS formalizing TAS

Fig. 2. A snip of a proof tree that mx(s) is an invariant of MTAS

state, s is an arbitrary state, and p, q, r are arbitrary process identifications. Case
analysis is then repeatedly used until what to show reduces either true or false.
Any case in which what to show reduces true is discharged. For any case in which
what to show reduces false, we need to conjecture lemmas. Let us consider the
case marked Case A in Fig. 2 in which mx(s, p, q) ⇒ mx(try(s, r), p, q) reduces
false. We can find some contradiction in the assumptions that characterize Case
A: pc(s, r) = rs, lock(s) = false, p 6= r, q = r and pc(s, p) 6= cs. We notice that
lock(s) = false contradicts pc(s, p) = cs, from which we conjecture the lemma:
pc(s, p) = cs ⇒ lock(s). Let lem1(s, p) refer to the lemma (a state predicate).
In Case A, lem1(s, p)∧mx(s, p, q)⇒ mx(try(s, r), p, q) reduces true, discharging
Case A, provided that we prove that (∀p ∈ Pid) lem1(s, p) is an invariant of
MTAS. The proof needs mx(s, p, q) as a lemma. This is why we use simultaneous
structural induction.

A Case Study on Extracting the Characteristics of the Reachable States 5

The systematic way to conjecture lemmas may not work for larger systems
than TAS because case analysis may have to be repeated too many times until
what to show reduces either true or false and there may be too many assump-
tions to find any contraction in them. Fortunately, we have some experiences
that lemmas can be effectively conjectured based on the characteristics of RM .
Therefore, it is worth extracting the characteristics of RM for a given M . The
characteristics are considered as knowledge about RM that is huge and un-
bounded in general. The task of extracting knowledge from a large database is
the role of ML. However, many classical machine-learning techniques only work
for a database whose elements are expressed in propositional form, while our
database consists of system states expressed in first-order form. There is the ML
technique that can deal with first-order forms: Inductive Logic Programming.

2.2 Inductive Logic Programming (ILP)

ILP [5] is a research area staying at the intersection of ML and Logic Program-
ming (LP) such that ILP inherits techniques and features from both sides. ILP’s
goal (also ML’s goal) is to develop techniques and tools to induce the knowledge
from a large amount of examples and to synthesize new knowledge from experi-
ence. Because ILP uses a LP language as the way to represent knowledge (called
hypotheses) and examples, first-order formulas can be dealt with by ILP. This
is important because there are many research areas whose domain knowledge
needs to be expressed in first-order logic or a variant of first-order logic. This
is also an important difference between ILP and classical ML techniques that
use the limited knowledge representation mechanism such as propositional logic.
Moreover, the representation mechanism in ILP makes the use of background
knowledge easier and more efficient than the classical ML techniques. It is impor-
tant because one of the well-established findings of artificial intelligence is that
the use of background knowledge is essential for archiving intelligent behavior.
In contrast to most other approaches to inductive learning, ILP is interested
in properties of inference rules, in convergence of algorithms and in the com-
putational complexity of procedures. Many ILP systems benefit from using the
results of LP. ILP extends the theories and practice of computational logic by
investigating induction rather than deduction as the basic mode of inference.
Whereas LP theory describes deductive inference of logic formulae provided by
users, ILP theory describes the inductive inference of logic programs from ex-
amples and background knowledge. In a general setting, the ILP’s learning task
is defined as follows. Given background knowledge B and examples E. The ex-
amples E = E+ ∧ E− consists of positive examples E+ such that B 6|= E+

and negative examples E− such that B ∧ E− 6|= �. The aim is then to find a
hypothesis H such that the hypothesis is complete with respect to the positive
examples E+, denoted B ∧ H |= E+, and is consistency with respect to the
negative examples E−, denoted B ∧H ∧ E− 6|= �.

To formalize fully an ILP task, the relation between B, H, E+ and E−

needs to be defined. This depends on several factors that include the chosen
LP language and LP semantics. ILP methods often require some form of bias

6 A Case Study on Extracting the Characteristics of the Reachable States

Fig. 3. ABP and part of a state machine MABP formalizing ABP

on the solution search space to restrict the computation to hypotheses. Forms
of bias include language bias and search bias (e.g. top-down or bottom-up). A
Mode Declaration is a form of language bias that specifies the syntactic form
of the hypotheses that can be learned. It contains head declarations and body
declarations that describe predicates that may appear, the desired input and
output and number of instantiations (called recall).

Our purpose is to characterize RM . However, it is not straightforward to
generate unreachable states from a system specification M that can be used
as negative examples, although positive examples that are reachable states and
background knowledge can be obtained from the system specification. Fortu-
nately, many learning modes for many kinds of learning purposes have been
developed in Progol. One of them is learning from positive data only [6] that is
most suitable mode for our purpose. This learning mode is based on a Bayesian
framework such that an upper bound for expected error is calculated with respect
to maximizing the Bayesian posterior probability when learning from positive
examples only.

3 Verification of Alternating Bit Protocol

Alternating Bit Protocol (ABP) is a communication protocol that makes it pos-
sible to reliably deliver packets (expressed as natural numbers) to a receiver from
a sender even under unreliable channels whose contents may be lost and dupli-
cated. A snapshot of ABP is shown in Fig. 3 (a). Let Bool be the set of Boolean
values, Nat be the set of natural numbers, Pair be the set of Bool-Nat pairs,
PQueue be the set of queues of Pair, BQueue be the set of queues of Bool and
List be the set of lists of Nat. sb, rb ∈ Bool, p ∈ Nat representing the packet to
be delivered, buf ∈ List in which the delivered packets are stored, dc ∈ PQueue

A Case Study on Extracting the Characteristics of the Reachable States 7

and ac ∈ BQueue. Note that t and f stand for true and false. There are six kinds
of actions referred as send1, rec1, send2, rec2, dup1, drop1, dup2, and drop2.
send1 puts 〈sb, p〉 into dc. send2 puts rb into ac. rec1 gets the top b from ac
if any, and complements sb and increments p if sb 6= b. rec2 gets the top 〈b, n〉
from dc if any, and complements rb and adds n to buf if rb = b. drop1 and drop2

drop the top from dc and ac, respectively. dup1 and dup2 duplicate the top of
dc and ac, respectively. ABP is formalized as a state machine MABP:

– Each state is characterized by six observable values. For each state s, sb(s),
rb(s), p(s), buf(s), dc(s) and ac(s) represent sb, rb, p, buf , dc and ac,
respectively. Their initial values are t, t, 0, nil (the empty list), the empty
queue, and the empty queue, respectively.

– There are six kinds of transitions corresponding to the six kinds of actions,
and the names of the six kinds of actions are also used as the names of
the six kinds of transitions. For each state s, send1(s), rec1(s), send2(s),
rec2(s), dup1(s), dup2(s), drop1(s) and drop2(s) denote the states obtained
by applying the six kinds of actions in s, respectively. Transitions send1 and
rec2 are depicted in Fig. 3 (b) and (c), respectively.

One property ABP should enjoy is called the reliable communication property
that all packets up to p, the one currently being delivered (or p−1, the previous
one) have been successfully delivered without any duplications nor any drops. All
we have to do is to prove that the following state predicate (referred as rcp(s)) is
an invariant of MABP to verify that ABP enjoys the property: (sb(s) = rb(s)⇒
mklst(p(s)) = p(s),buf(s)) ∧ (sb(s) 6= rb(s) ⇒ mklst(p(s)) = buf (s)), where
mklst(0) = 0,nil and mklst(n + 1) = n + 1,mklst(n).

To prove that rcp(s) is an invariant of MABP , we have first used simulta-
neous structural induction on s. Applying case analysis a couple of times to
the induction case where transition rec1 is taken into account, we have reached
the case that corresponds to an arbitrary state s such that ac(s) = b10 bf10,
sb(s) 6= b10 and rb(s) 6= b10, where b10 is an arbitrary one of Bool and bf10 is
an arbitrary one of PQueue. The assumptions say that ac(s) is not empty and
the top element of ac(s) is neither the same as sb(s) nor rb(s). The case could
have been further split, but our experiences of theorem proving and understand-
ings of ABP have told us that there seems to be some contradiction in the case.
For any reachable state s, if ac(s) is not empty, then the top element of ac(s)
must be the same as sb(s) and/or rb(s). Then, we have conjectured a lemma:
ac(s) 6= empty ⇒ (top(ac(s)) = sb(s) ∨ top(ac(s)) = rb(s)). The lemma can be
used to discharge the case.

This is why we have graphically drawn the six state patterns shown in Fig. 4.
We have conjectured several lemmas from the six state patterns to complete
the proof that rcp(s) is an invariant of MABP. The six state patterns can be
regarded as the characteristics of the reachable states of MABP and we have
learned that the characteristics of RM help us conjecture lemmas for the proof
that a state predicate is an invariant of M . One of those lemmas is (∀ps1, ps2 ∈
PQueue)(∀p1, p2, p3 ∈ Pair) (dc(s) = ps1@(p1 p2 ps2) ∧ p1 6= p2 ⇒ (p3 ∈ ps2 ⇒

8 A Case Study on Extracting the Characteristics of the Reachable States

Fig. 4. Six state patterns of ABP

p2 = p3)∧p2 = 〈sb(s),p(s)〉) that can be conjectured from State pattern 6, where
@ is the concatenation function of queue. In the next section, we report on a case
study that Progol, an ILP system, has been used to extract the characteristics of
the reachable states of MABP in the form of logic programs, which demonstrates
that ILP is useful to extract the characteristics of RM .

4 A Case Study

4.1 Method

The architecture of the proposed method that extracts the characteristics of RM

is depicted in Fig. 5. A system specification of M for the OTS/CafeOBJ method
consists of a part of data structures and a part of a state machine. The data
structure part is converted into Horn clauses that define types and predicates
used as the background knowledge by an ILP system. The system specification
for the OTS/CafeOBJ method is translated into another system specification of
M that is suited for model checking with YAST [7], a specification translator.
A bounded model checker (the Maude search command) is used to generate a
set of reachable states from the system specification for model checking. The set
of reachable states is used as E+. This is how the sate machine part is used.
The Maude search command can generate reachable states that satisfy a given
condition. For example, states s such that neither dc(s) nor ac(s) is empty can
be generated. The background knowledge, E+ and mode declarations are fed
into an ILP system and H is generated as the result. H is a set of Horn clauses
that defines a predicate that can be regarded as the characteristics of RM .

Among data structures used in the system specification of MABP for the
OTS/CafeOBJ method are those for Bool, Nat, List, PQueue and BQueue. The
data structure part also contains some functions on those data structures such
as those that put an element into a queue and get the top from a queue if any.
Such functions are converted into predicates defined in clauses. We may have to

A Case Study on Extracting the Characteristics of the Reachable States 9

Fig. 5. Architecture of proposed method

use some more functions that are not explicitly used in the system specification
such as gap0 and gap1 mentioned later to extract the better characteristics of
RM .

4.2 Experiments

We have conducted two experiments referred as Expt. 1 and Expt. 2. Both ex-
periments have used about 10000 reachable states as positive examples, al-
though each reachable state s1 used in Expt. 1 fulfills the constraints that the
len(dc(s1)) > 0, len(ac(s1)) > 0 and len(buf(s1)) > 0, and each reachable state
s2 used in Expt. 2 fulfills the constraints that the len(dc(s2)) > 1, len(ac(s2)) > 1
and dc(s2)) > 1, len(ac(s2)) > 1 and len(buf(s2)) >, where len returns the num-
ber of elements in a given queue (or list). The constraints prevent from generating
many trivial non-interesting clauses.

Each experiment produces a set of clauses such that the head of each clause
is in the form state(sb, p, rb, buf , dc, ac) that represents a state of MABP and
the body of each clause captures some characteristics of the reachable states
of MABP. Expt. 1 has used the following head mode declaration (referred as
modeh1):

modeh(1, state(+bool,+pnat,+bool,+nlist,+pqueue,+bqueue))?

The recall number is 1 and each parameter of state is a single input variable.
Exp. 2 has used the following head mode declaration (referred as modeh2):

modeh(1,state(+bool,+pnat,+bool,+nlist,
[p(+bool,+pnat) |+ pqueue], [+bool |+ bqueue]))?

where p(b, n) represents 〈b, n〉 and and [e | l] represents the list such that e is the
head and l is the tail. The 5th parameter of state is not nil, and neither is the
6th parameter.

10 A Case Study on Extracting the Characteristics of the Reachable States

The following predicates are also used in body mode declarations:

toppqu(A,B) Pair B is on top of queue A of pairs
topbqu(A,B) Boolean value B is on top of queue A of Boolean values
mk(A,B) B is a ordered list of natural numbers from number A to 0
neg(A,B) Boolean value A is the complement of B
fst(A,B) A is the first element of pair B
snd(A,B) A is the second element of pair B
pred(A,B) Number B is the predecessor of number A
memp(A,B) Pair A is in queue B of pairs
memb(A,B) Boolean value A is in queue B of Boolean values

4.3 Evaluation

The set of clauses extracted as the hypothesis in Expt. 1 is as follows:

state(A,B,C,D,E,F):- toppqu(E,G),topbqu(F,A),mk(B,D), neg(A,C), fst(G,A),
snd(G,B).

state(A,B,C,D,E,F):- toppqu(E,G),topbqu(F,C),mk(B,D),neg(A,C),fst(G,A),
snd(G,B).

state(A,B,C,D,E,F):- toppqu(D,F),topbqu(E,A),pred(B,G), fst(F,H),snd(F,G),
mk(G,C),neg(H,A).

state(A,B,C,D,E,F):- toppqu(D,F),topbqu(E,A),memp(p(A,B),D),pred(B,G),
fst(F,A),snd(F,B),mk(G,C).

The set of clauses extracted as the hypothesis in Expt. 2 is as follows:

state(A,B,C,D,[p(A,B)|E],[A|F]):- neg(A,C),memp(p(A,B),E),memb(A,F).
state(A,B,C,D,[p(A,B)|E],[A|F]):- neg(A,C), memp(p(A,B),E),memb(C,F).
state(A,B,C,D,[p(E,F)|G],[C |H]):- neg(E,C),memp(p(A,B),E),memb(C,F).
state(A,B,A,C,[p(D,E)|F],[A|G]):- neg(A,D), succ(E,B),memp(p(A,B),F),

memb(A,G).
state(A,B,C,D,[p(A,B)|E],[A|F]):- neg(A,G),memp(p(C,B),E), memb(A,F),

neg(G,C).

Each clause obtained from these two experiments characterizes some aspects
of reachable states. Considering Expt. 1, the first clause describes State pattern 2
and 3 such that sb 6= rb (for neq(A,C)), sb is the top bit of ac (for topbqu(F,A))
and 〈sb, p〉 is the top packet of dc (for topppqu(E,G), fst(G,A), snd(G,B)). The
second clause describes State pattern 4, is quite similar to the first clause, but
rb is the top bit of ac (for topbqu(F,C)). The two remain clauses describe the
case sb = rb. The third clause describes State pattern 5 and 6 such that the top
packet 〈b,n〉 of dc is different from 〈sb, p〉, b = rb, n = p − 1 and mklst(n) is
the same as buf . The last clause is quite similar to the third one but it describes
State pattern 1 such that 〈sb, p〉 is the top pair of dc. This clause correctly
describes almost all reachable states classified into State pattern 1 but does not

A Case Study on Extracting the Characteristics of the Reachable States 11

some states with p = 0 . This is because buf(s) 6= nil for each s in the set of
reachable states used as E+ in Expt. 1, and then we do not think that this is a
serious problem.

For characterizing RMABP
in more detail, we have conducted Expt. 2 using

modeh2 that specifies that the inputs used for both the 5th and 6th parameters
of state are not empty. Because of each reachable state s used in Expt. 2 as
a positive example such that len(dc(s)) > 1 and len(ac(s)) > 1, moreover, the
bottom of each of two such inputs is not empty.. Therefore, we do not need
to use toppqu and topbqu in the background knowledge. Each obtained clause
describes the state patterns in more detail than Expt. 1. For instance, the first
clause describes State pattern 2 and 3 in which sb is the top bit of ac and also
appears in the bottom of ac. The second clause describes State pattern 3 in
much more detail than the first one such that rb appears in the bottom of ac.
The third clause describes State pattern 4 such that sb 6= rb and rb appears in
the top and bottom of ac. The fourth clause describes State pattern 6 such that
sb = rb, 〈¬sb, p − 1 〉 is the top of dc and 〈sb, p〉 appears in the bottom of dc.
The last clause describes State pattern 1 such that sb = rb, 〈sb, p〉 appears in
both the top and bottom of dc.

In ILP, the search space of this characterization task is restricted by both
syntactic form (mode declaration) of target theories (predicate state) and the
available predicates, functions and constant symbols (called vocabulary). The
vocabulary strongly effects if the correct hypothesis can be successfully found.
For this case study, State pattern 3 in Fig. 4 shows a characteristic in which
dc consists of two different elements such that there exists only one position
where the two adjacent elements are different in dc. Progol cannot learn this
characteristic since the vocabulary provided by the system specification is not
strong enough. If we use two more predicates gap0 and gap1 that checks if a given
queue has no gap and at most one gap, respectively, as part of the vocabulary,
Progol can learn this characteristics.

The experiments demonstrate that ILP is useful to extract some characteris-
tics of RMABP

that can be found in the six state patterns in Fig. 4. It is beneficial
to systematically extract such characteristics to conjecture lemmas for invariant
verification with ITP described in Sect. 4. Although there are some character-
istics that cannot be extracted by ILP if we only use the vocabulary directly
obtained from the system specification of MABP, however, those characteristics
can be extracted if we use the extra vocabulary gap0 and gap1. Hence, one piece
of our future work is to come up with a way to discover such extra vocabulary,
which is likely to be related to Predicate Invention [8], a research domain in ILP.

5 Related work

ML has been applied to find lemmas in ACL2 [9] that can calculate the similarity
between the current proof and other proofs in a given proof library containing
many existing proofs that have already proved. The most similar proofs will stay

12 A Case Study on Extracting the Characteristics of the Reachable States

at same group, and then the system will pick the lemmas in the proved proofs
to generate the lemmas for current proof.

Furthermore, ILP has been successfully used in system verification with an
integrated framework of model checking and ILP [10] such that ILP is used
as a complementation part of model checking. A system specification suited for
model checking is considered as system requirements but it is fail in some desired
properties. To modify the specification, they provide some new requirements ex-
pressed in a modeling language, e.g. LTL such that the new specification will
enjoy the properties. The new requirements are the hypotheses obtained from an
ILP learning task that is formulized by the components generated from a model
checker, i.e. counterexamples (a.k.a. negative examples), witnesses (a.k.a. posi-
tive examples) and background knowledge consisting of the system specification
and the properties.

6 Conclusion

We have described how to conjecture lemmas based on the the characteristics of
RMABP

, suggesting that such characteristics are useful for lemma conjecture. We
have then reported on a case study demonstrating that ILP is useful to extract
some characteristics of RMABP . We have also realized that ILP requires some
extra vocabulary to extract some other characteristics of RMABP

.

References

1. Ogata, K. and Futatsugi, K.: Proof Score Approach to Analysis of Electronic Com-
merce Protocols, IJSEKE, 20(2): 253-287, 2010.

2. Kroening, D. and Strichman, O.: Decision Procedures: An Algorithmic Point of
View, Springer, 2008.

3. Ogata, K. and Futatsugi, K.: Proof Scores in the OTS/CafeOBJ Method, 6th
FMOODS, LNCS 2884, Springer, pp.170-184 (2003).

4. Ogata, K. and Futatsugi, K.: Some Tips on Writing Proof Scores in the
OTS/CafeOBJ Method, Algebra, Meaning, and Computation, LNCS 4060,
Springer, pp.596-615 (2006).

5. Muggleton, S., Raedt, L.: Inductive logic programming: Theory and methods. The
Journal of Logic Programming 19-20: pp. 629-679 (1994)

6. Muggleton, S.:Learning from positive data, 6th ILP, LNCS 1314, Springer, pp.358-
376 (1996)

7. Zhang, M., Ogata, K., Nakamura, M.: Translation of state machine from equational
theories into rewrite theories with tool support. IEICE Transactions 94-D (2011)
976-988

8. Stahl, I.: Predicate invention in ILP - an overview, ECML-93, LNCS 667, Springer,
pp.313-322 (1993)

9. Heras, J., Komendantskaya, E., Johansson, M., Maclean, E.: Proof-pattern recogni-
tion and lemma discovery in ACL2. In: LPAR-19. LNCS 8312 (2013) 389-406

10. Alrajeh, D., Russo, A., Uchitel, S., Kramer, J.: Integrating model checking and
inductive logic programming, 21st ILP, 45–60, (2011).

