
Learning Multi-Valued Biological Models with
Delayed Influence from Time-Series

Observations

Tony Ribeiro1, Morgan Magnin2,3, Katsumi Inoue1,2, and Chiaki Sakama4

1 The Graduate University for Advanced Studies (Sokendai),
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

tony ribeiro@nii.ac.jp,
2 National Institute of Informatics,

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan,
3 Institut de Recherche en Communications et Cybernétique de Nantes (IRCCyN),

École Centrale de Nantes, 1 rue de la Noë 44321 Nantes, France
4 Department of Computer and Communication Sciences, Wakayama University,

Sakaedani, Wakayama 640-8510, Japan

Abstract. Delayed effects are important in modeling biological systems,
and timed Boolean networks have been proposed for such a framework.
Yet it is not an easy task to design such Boolean models with delays
precisely. Recently, an attempt to learn timed Boolean networks has been
made in [11] in the framework of learning state transition rules from
time-series data. However, this approach still has two limitations: (1)
The maximum delay has to be given as input to the algorithm; (2) The
possible value of each state is assumed to be Boolean, i.e., two-valued. In
this paper, we extend the previous learning mechanism to overcome these
limitations. We propose an algorithm to learn multi-valued biological
models with delayed influence by automatically tuning the delay. The
delay is determined so as to minimally explain the necessary influences.
The merits of our approach is then verified on benchmarks coming from
the DREAM4 challenge.

Keywords: dynamical systems, multi-valued models, delay, Markov(k),
learning from interpretation transition, inductive logic programming

1 Introduction

In some biological and physical phenomena, effects of actions or events appear at some
later time points. For example, delayed influence can play a major role in various
biological systems of crucial importance, like the mammalian circadian clock [5] or
the DNA damage repair [1]. While Boolean networks have proven to be a simple, yet
powerful, framework to model and analyze the dynamics of the above examples, they
usually assume that the modification of one node results in an immediate activation
(or inhibition) of its targeted nodes [2] for the sake of simplicity. But this hypothesis
is sometimes too broad and we really need to capture the memory of the system i.e.,
keep track of the previous steps, to get a more realistic model. Our work aims to give
an efficient and valuable approach to learn such dynamics. In some previous works,
Markov(1) state transition systems are represented with logic programs [7], in which
the state of the world is represented by an Herbrand interpretation and the dynamics
that rule the environment changes are represented by a logic program P . The rules in P

specify the next state of the world as an Herbrand interpretation through the immediate
consequence operator (also called the TP operator). With such a background, Inoue et
al. [8] have recently proposed a framework to learn logic programs from traces of
interpretation transitions (LFIT). The learning setting of this framework is as follows.
We are given a set of pairs of Herbrand interpretations (I, J) as positive examples
such that J = TP (I), and the goal is to induce a normal logic program (NLP) P
that realizes the given transition relations. We recently extended these researches by
designing an algorithm that takes multiple sequences of state transition as input and
builds a normal logic program that captures the delayed dynamics of a Markov(k)
system [11], however limited to interacting components modeled as Boolean variables.
Boolean paradigm may appear as a simplified formalism, but it has led to significant
results on the behavior of regulatory networks, particularly in terms of cycle behavior
or steady states. Boolean values are however not sufficient to capture the complexity
of some systems. For example, when a biological component activates one gene and
inhibits a third one, there is a very low probability that these interactions become
effective at the same concentration level of the input component. The need for such
multi-valued extension has been discussed and illustrated on different biological case
studies, like immunity control in bacteriophage lambda [12] or p53-MdM2 network [1].
That is why Boolean modeling principles were extended so that the model can capture
different levels (discrete) expression. This has opened the way to multi-valued logical
modeling, as studied in many papers among the last twenty years [4]. In this paper, we
aim to capture delayed influences in such multi-valued networks, which allow a more
consistent representation of biological systems.

2 Multi-valued System

In this section we extend the formalization of [11] to handle multi-valued systems.
The new algorithm can also compute the delay dynamically, whereas, in the previous
version, the delay has to be given as an input, and was fixed. This algorithm can also
be used to learn multi-valued Markov(1) system, thus it will guaranty to output only
prime rules [10]. In order to represent multi-valued variables, we now restrict all atoms

of a logic program to the form varval. The intuition behind this form is that var
represents some variable of the system and val represents the value of this variable.
Our formalization of multi-valued logic program is based on annotated logics [3]. In
annotated logics, the atom var is said to be annotated by the constant val. We consider
a multi-valued logic program as a set of rules of the form

varval ← varval11 ∧ · · · ∧ varvalnn (1)

where varval and varvalii ’s are atoms (n ≥ 1). For any rule R of the form (1), the

atom varval is called the head of R and is denoted as h(R), and the conjunction to the
right of ← is called the body of R. We represent the set of literals in the body of R of

the form (1) as b(R) = {varval11 , . . . , varvalnn }. A rule R of the form (1) is interpreted
as follows: the variable var takes the value val in the next state if all variable vari
have the value vali in the current state. An interpretation of a multi-valued program
provides the value of each variable of the system and is defined as follows.

Definition 1 (Multi-valued interpretation). Let B be a set of atoms where each

element has the form varval. An interpretation I of a set of atoms B is a subset of B
where ∀varval ∈ B, varval

′
∈ I and ∀varval

′
∈ I,@varval

′′
∈ I, val′ 6= val′′.

For a system S represented by a multi-valued logic program P and a state s1 repre-
sented by an interpretation I, the successor of s1 is represented by the interpretation:

next(I) = {h(R) | R ∈ P, b(R) ⊆ I}

The state transitions of a logic program P are represented by a set of pairs of multi-
valued interpretations (I, next(I)).

Definition 2 (Multi-valued consistency). Let R be a rule and (I, J) be a state
transition. R is consistent with (I, J) iff b(R) ⊆ I implies h(R) ∈ J . Let E be a set of
state transitions, R is consistent with E if R is consistent with all state transitions of
E. A logic program P is consistent with E if all rules of P are consistent with E.

The notion of subsumption among rules is formally the same as for the Boolean
case. We say that a rule R1 is more general than another rule R2 if b(R1) ⊆ b(R2).
In particular, a rule R is most general if there is no rule R′(6= R) that subsumes R
(b(R) = ∅). To learn multi-valued logic programs with LF1T we need to adapt the
least specialization of [10] to handle non-Boolean variables.

Definition 3 (Multi-valued least specialization). Let R1 and R2 be two rules
such that h(R1) = h(R2) and R1 subsumes R2. Let B be a set of atoms. The least
specialization ls(R1, R2,B) of R1 over R2 w.r.t B is

ls(R1, R2,B) = {h(R1)← b(R1)∧varval
′
|varval ∈ b(R2)\b(R1), varval

′
∈ B, val′ 6= val}

Least specialization can be used on a rule R to avoid the subsumption of another
rule with a minimal reduction of the generality of R. By extension, least specialization
can be used on the rules of a logic program P to avoid the subsumption of a rule with a
minimal reduction of the generality of P . Let P be a logic program, B be a set of atoms,
R be a rule and S be the set of all rules of P that subsume R. The least specialization
ls(P,R,B) of P by R w.r.t B is as follows:

ls(P,R,B) = (P \ S) ∪ (
⋃

RP∈S
ls(RP , R,B))

3 Multi-valued Markov(k) systems

In this section, we recall the formalization of [11] about Markov(k) systems and adapt
it to multi-valued variables. A Markov(k) system can be seen as a k-steps deterministic
system. In other words, the state of the system may depend on its (at most) k previous
states. i.e., for any sequence of k state transitions there is only one possible state at time
step k + 1. If a system is Markov(k), it means that k is the maximum number of time
steps such that the influence of any component (e.g., a gene) on another component is
expressed. In other words, the state of a system may then depend on its (at most) k
previous states.

Definition 4 (Timed Herbrand Base). Let P be a logic program. Let B be the
Herbrand base of P and k be a natural number. The timed Herbrand Base of P (with
period k) denoted by Bk , is as follows:

Bk =

k⋃
i=1

{varvalt−i|var
val ∈ B}

where t is a constant term which represents the current time step.

According to Definition 4, given a propositional atom varval, varvalj is a new propo-

sitional atom for each j = t−i, (0 ≤ i ≤ k). A Markov(k) system can then be interpreted
as a logic program as follows.

Definition 5 (Markov(k) system). Let P be a logic program, B be the Herbrand
base of P and Bk be the timed Herbrand base of P with period k. A Markov(k) system
S with respect to P is a logic program where for all rules R ∈ S, h(R) ∈ B and all
atoms appearing in b(R) belong to Bk.

In a Markov(k) system S, the atoms that appear in the body of the rules represent
the value of the atoms that appear in the heads, but at previous time steps. In a context
of modeling gene regulatory networks, these latter atoms represent the concentration
of the interacting genes. This concentration is abstracted as an integer value modeling
the fact that it is lower or greater than certain thresholds. Trace of executions, their
consistency and k-step interpretations are formally equivalent to the Boolean case
formalized in [11].

4 Algorithm

In [11] we proposed a method to learn delayed influences of Boolean systems: the LFkT
algorithm. LFkT is an algorithm that can learn the dynamics of a Markov(k) system
from its traces of execution. LFkT takes a set of traces of executions O as input, where
each trace is a sequence of state transitions. If O is consistent, the algorithm outputs
a logic program P that realizes all transitions of O. In this section, we propose a new
version of this algorithm that handle multi-valued variables. Furthermore, the delays
are now computed dynamically and do not need to be known or fixed to the size of the
longest trace.

LFkT:

– Input: A set of traces of executions O of a multi-valued Markov(k) system S.
– Step 1: Initialize a logic program with fact rules.
– Step 2: Pick a trace T from O and update the delay considered accordingly.
• Initialize a logic program with fact rules for each new delay.
• Revise these logic programs with all previous traces (like step 3).

– Step 3: Convert the trace into interpretation transitions and revise the logic programs
using least specialization.

– Step 4: If there is remaining trace in O, go back to step 2.
– Step 5: Merge all logic programs into one while avoiding rules subsumption.
– Step 6: Remove all rules that are not necessary to explain the observations.
– Output: A set of rules which realizes O.

The detailed pseudo code of LFkT is given as appendix in Algorithm 1.

Theorem 1 (Correctness of LFkT). Let P be a logic program, B be the Herbrand
base of P and Bk be the timed Herbrand base of P with period k. Let S be a Markov(k)
system with respect to P . Let O be a set of traces of S. Using O as input, LFkT outputs
a logic program that realizes all consistent traces of O. Proof is given in appendix.

Theorem 2 (Complexity). Let P be a logic program, B be the Herbrand base of
P and Bk be the timed Herbrand base of P with period k. Let S be a multi-valued
Markov(k) system with respect to P . Let n be the number of variable of S. Let v be the
maximal number of value of a variable of S. Let O be a set of traces of execution of

S. The complexity of learning S from O with LFkT is respectively: O(n · vnk+1 + |O|)
for memory and O(

∑
T∈O

|T | · nvnk+3 + |O| · n2k2 + n · vnk+2 + n · vnk+1 · |O| · k) for

runtime. Proof is given in appendix.

5 Evaluation

In this section, we assess the efficiency of our new LFkT algorithm through case studies
coming from the DREAM4 challenge [9].

DREAM challenges are annual reverse engineering challenges that provide biolog-
ical case studies. In this paper, we focus on the datasets coming from DREAM4. The
input data that we tackle here consists of the following: 5 different systems each com-
posed of 10 genes, all coming from E. coli and yeast networks. For every such system,
the available data are the following: (i) 5 time series data with 21 time points; (ii)
steady state at wild type; (iii) steady states after knocking out each gene; (iv) steady

states after knocking down each gene (i.e. forcing its transcription rate at 50%); (v)
steady states after some random multifactorial perturbations. We processed all the
data. Because of the lack of space, we focus here on the management of time series
data.

5.1 Settings

Time series data provide us 20 transitions. Each of them include different perturbations
that are maintained all time along during the first 10 transitions and applied to at most
3 genes. In this setting, a perturbation means a significant increase or decrease of the
gene expression. In the raw data of the time series, gene expression values are given
as real number between 0 and 1. To apply our approach, we chose to discretize those
data into 4 qualitative values. Each gene is discretized in an independent manner,
with respect to the following procedure: we compute the average value of the gene
expression among all data of a time series, then the values between the average and the
maximal/minimal value are divided into as many levels. Discretizing the data according
to the average value of expression is expected to reduce the impact of perturbation on
the discretization and thus on the rules that are learned.

5.2 Results

Benchmark run time raw output final output Mean squared error
insilico size10 1 28s 118,834 359 0.073
insilico size10 2 2m5s 401,923 462 0.064
insilico size10 3 44s 151,021 480 0.019
insilico size10 4 22s 90,904 387 0.031
insilico size10 5 1m04s 297,364 326 0.091

Table 1. Evaluation of LFkT on learning and prediction of gene regulatory network
benchmarks from the DREAM4 challenge.

Table 1 shows the evolution of runtime, output size and precision of prediction
of LFkT on the five benchmarks of the DREAM4 challenge. Here, we use LFkT to
learn rules independently for each time series. The rules learned on one time series are
evaluated on the others series in a cross-validation manner. The precision of each rule
is computed as the ratio between the number of times they match a transition and
how many transitions they realize. For a transition (I, J) when b(R) ⊆ I, the rule R
matches the transition and if h(R) ∈ J , R realizes the transition. To use the model
learned to predict the next state of the system we simply apply the rules with the best
ratio that matches the current state. By doing so, we expect to reduce the impact of
the perturbations on the predictions of the model learned.

The number of generated rules is huge, but the following simple heuristics can be
used to greatly reduce it. First, rules that never realize any transitions can be discarded.
Rules that are subsumed by rules with a better or equal precision are discarded. This
allows to remove about 50% of the rule generated. We can also detect and discard
rules that will never be used for prediction: the rules that never have a better precision
than an other rule that matches a same state with a different conclusion. This allows
to remove about 99% of the remaining rules. Using those simple heuristics does not
impact the dynamic of the model that is learned: the prediction will be exactly the
same. But it simplifies the model that is learned and makes it more human readable.
The run time showed in Table 1 includes: learning, cross-validation and applications
of the heuristics. All experiments are run with a C++ implementation of LFkT on a
processor Intel Xeon (X5650, 2.67GHz) with 12GB of RAM.

The DREAM4 challenge offers two different problems, which consist in predicting
(i) the structure of the gene interactions (in terms of an unsigned directed graph);
(ii) attractors in some given conditions. So far, LFkT is not designed to efficiently

tackle the first issue. Indeed, LFIT method focuses on the learning of the dynamics
of the observed system. This means that the rules learned by LFkT will be recurrent
patterns, i.e., correlations between the evolution of values of the different variables.
This method however can be fully applied to predict attractors. For this evaluation, we
are given an initial state and 5 different dual gene knockouts conditions. The goal is to
predict the attractor in which the system will fall from the initial state for each dual
knockout. In the challenge, the quality of the prediction is evaluated by computing the
mean square error between the predicted state and the expected one. The precision we
achieved in those experiments is quite good considering the results of the competitors
of the DREAM4 challenge [6]. Their results range between 0.01 and 0.075 for the same
evaluation settings, which we are comparable to.

We plan to pursue these evaluations. Competitors of DREAM4 Challenge tackled
not only the networks with 10 genes, but also the ones consisting of 100 genes with no
drastic loss of precision. In this on-going work, we now consider applying our approach
to these large networks, to get stronger arguments in favor of our approach. Further-
more, [6] showed much better prediction results (0.01 to 0.025), when changing the
given initial state for the one based on single gene knockout. We should also consider
to discuss this issue in future works in order to improve our method, which obtained
encouraging first results as showed in this subsection.

6 Conclusion
In this paper, we propose a twofold extension of our previous results to learn normal
logic programs from interpretation transitions on k-steps: (i) Delay is now dynami-
cally adjusted and does not need to be initially assumed as input.; (ii) The learning
algorithm natively tackles multi-valued models. The work can then be directly applied
to the learning of Boolean and multi-valued discrete networks with delayed influences,
which is crucial to understand the memory effect involved in some interactions between
biological components. Further works aim at performing a comprehensive evaluation of
our approach on data coming from DREAM4 challenge (and further iterations of this
challenge). This would contribute to assess the merits of our approach for biologists.
We should also consider connecting through various databases in order to extract real
time series data, and subsequently explore and use them to learn genetic regulatory
networks. We also consider extending the methodology to asynchronous semantics,
which can help to capture more realistic behaviors.

References

1. Abou-Jaoudé, W., Ouattara, D.A., Kaufman, M.: From structure to dynamics: frequency tuning
in the p53–mdm2 network: I. logical approach. Journal of theoretical biology 258(4), 561–577
(2009)

2. Akutsu, T., Kuhara, S., Maruyama, O., Miyano, S.: Identification of genetic networks by strate-
gic gene disruptions and gene overexpressions under a boolean model. Theoretical Computer
Science 298(1), 235–251 (2003)

3. Blair, H.A., Subrahmanian, V.: Paraconsistent logic programming. Theoretical Com-
puter Science 68(2), 135 – 154 (1989), http://www.sciencedirect.com/science/article/pii/
0304397589901266, {SPECIAL} {ISSUE}

4. Chaouiya, C., Naldi, A., Remy, E., Thieffry, D.: Petri net representation of multi-valued logical
regulatory graphs. Natural Computing 10(2), 727–750 (2011)

5. Comet, J.P., Bernot, G., Das, A., Diener, F., Massot, C., Cessieux, A.: Simplified models for
the mammalian circadian clock. Procedia Computer Science 11, 127–138 (2012)

6. Greenfield, A., Madar, A., Ostrer, H., Bonneau, R.: Dream4: Combining genetic and dynamic
information to identify biological networks and dynamical models. PloS one 5(10), e13397–
e13397 (2010)

7. Inoue, K.: Logic programming for boolean networks. In: Proceedings of the Twenty-Second
International Joint Conference on Artificial Intelligence. pp. 924–930. IJCAI’11, AAAI Press
(2011), http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-160

8. Inoue, K., Ribeiro, T., Sakama, C.: Learning from interpretation transition. Machine Learning
94(1), 51–79 (2014)

9. Prill, R.J., Saez-Rodriguez, J., Alexopoulos, L.G., Sorger, P.K., Stolovitzky, G.: Crowdsourcing
network inference: the dream predictive signaling network challenge. Science signaling 4(189),
mr7 (2011)

10. Ribeiro, T., Inoue, K.: Learning prime implicant conditions from interpretation transition. In:
The 24th International Conference on Inductive Logic Programming (2014), to appear (long
paper) (http://tony.research.free.fr/paper/ILP2014long)

11. Ribeiro, T., Magnin, M., Inoue, K., Sakama, C.: Learning delayed influences of biological sys-
tems. Frontiers in Bioengineering and Biotechnology 2, 81 (2015)

12. Thieffry, D., Thomas, R.: Dynamical behaviour of biological regulatory networks-ii. immunity
control in bacteriophage lambda. Bulletin of Mathematical Biology 57(2), 277–297 (1995)

http://www.sciencedirect.com/science/article/pii/0304397589901266
http://www.sciencedirect.com/science/article/pii/0304397589901266
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-160

A Appendix

A.1 Pseudo Code

Algorithm 1 LFkT(O,B) : Learn a set of rules that realize O

1: INPUT: O a set of traces of executions, B a set of atoms
2: OUTPUT: P a logic program that realizes the transitions of O.

3: P ′ a vector of set of rules
4: E a set of pairs of interpretations (I, J)
5: k an integer

6: // 1) Initialize P ′ with the most general logic program

7: for each atom varval ∈ B do
8: P ′1 := P ′1 ∪ {var

val ←}
9: k := 1 // Assume Markov(1)

10: // 2) Learning phase
11: while O 6= ∅ do
12: pick a trace T ∈ O

13: // 2.1) Check delay of the trace
14: if delay(T) > k then // Extend the delay to learn
15: for i = k + 1 to delay(T) do

16: for each atom varval ∈ B do

17: for each atom var′val′ ∈ B do

18: P ′i := P ′i ∪ {var
val ← var′val′

t−i }
k := delay(T)

19: for each trace T ′ ∈ O′ do
20: P ′ := learn(P, T ′, k,B)

21: // 2.2) Check consistency with previous traces
22: if ∃T ′ ∈ O′, T and T ′ are not k-consistent then
23: for each k′ from k to min(|T |, |T ′|) do
24: if T and T ′ are k′-consistent then
25: for i = k to k′ do
26: for each atom varval ∈ B do

27: for each atom var′val′ ∈ B do

28: P ′i := P ′i ∪ {var
val ← var′val′

t−i }
29: for each trace T ′ ∈ O′ do
30: P ′ := learn(P, T ′, k,B)

31: k := k’
32: else//T and T ′ are not consistent, cannot happen if O is consistent
33: EXIT: non-deterministic input

34: // 2.3) Specify P ′ by the interpretations of the trace
35: P ′ := learn(P, T, 1,B)
36: O := O \ {T}
37: O′ := O′ ∪ {T}
38: end while

39: // 3) Merge the programs into a unique logic program
40: merging := ∅
41: for each i from 1 to k do
42: remove from P ′i all rules subsumed by a rule of merging
43: merging := merging ∪ P ′i

44: // 4) Keep only the rules that can realize the observations
45: P := ∅
46: for each T ′ ∈ O′ do
47: E := interprete(T ′)
48: for each (I, J) ∈ E do
49: for each R ∈ merging do
50: if b(R) ⊆ I and h(R) ∈ J then
51: P := P ∪ {R}
52: return P

Algorithm 2 delay(T) : Compute the minimal delay of a trace

1: INPUT: a trace of execution T = (S0, . . . , Sn)
2: OUTPUT: delay an integer

3: delay := 1
4: for each i from 1 to n− 1 do
5: for each j from i to n− 1 do
6: if Si = Sj then
7: k := 1
8: while k ≤ i AND Si−k = Sj−k do
9: k := k + 1
10: end while
11: delay := max(delay,k)

12: return delay

Algorithm 3 learn(P, T,min delay,B) : Revise P to avoid the subsumption of R

1: INPUT: P a vector of logic program, T a trace of execution and min delay an integer
2: OUTPUT: a vector of logic program

3: E := interprete(T)
4: for each i from min delay to |T | do
5: for each k-step interpretation (I, J) ∈ E with k ≥ i do

6: remove from I all atoms varval
t−n with n > i

7: for each atom varval ∈ J do

8: for each varval′ ∈ B, val′ 6= val do

9: RI

varval′ := varval′ ←
∧

lj∈I
lj

10: Pi := Specialize(Pi, R
I

varval′ ,B)

return P

1) The algorithm starts with a logic program that only contains all possible fact
rules and assumes that the system to learn is Markov(1) (lines 6-9). These different
programs are merged at the end to constitute a logic program that realizes all consistent
traces of O. 2.1) Before learning from a trace, we need to guarantee that we are
considering a valid delay according to the trace (lines 13-20). That is why we check the
minimal delay required to explain the trace by using the delay function, whose pseudo
code is given in Algorithm 2. If this delay is greater than the one currently considered
by the algorithm, it updates this delay and generates programs for all missing delays
(lines 14-20). All previously analyzed traces are then re-analyzed but only for these
new programs. This allows to learn only the missing delayed rules. 2.2) Then it checks
the consistency of the new trace with previously analyzed ones (lines 21-31). The delay
considered is increased if necessary. In practice, the consistency of the new traces with
previously analyzed ones can be directly checked from the programs that are learned.
If the program that considers the biggest delay k has no rule that can realize the last
transition of T (if 6 ∃R ∈ P ′k, b(R) ⊆ I with (I, Sn) := the |T |-step interpretation
transition of T), then the trace is not k-consistent with at least one of the previous
ones. 2.3) The program that is learned is revised according to the new trace using
least specialization (lines 34-37). In order to use least specialization, we need to convert
the trace of execution into interpretation transitions. This conversion is done by the
function interprete, whose pseudo code is given in Algorithm 4. Here, min(k, |T |)
interpretation transitions are extracted from the trace, one for each possible delay
inferior to the currently considered one, that is k. Following this method, it produces

one min(k, |T |)-step interpretation, one min(k, |T |)− 1 interpretation, . . . , one 1-step
interpretation. The function outputs them as a vector of interpretation transitions E,
where each Ei corresponds to an i-step interpretation transition of a sub-trace of size
i of T . The algorithm iteratively learns from each pair of interpretations of E. Now it

Algorithm 4 interprete(T) : Extract interpretation transitions from a trace

1: INPUT: a trace of execution T = (S0, . . . , Sn)
2: OUTPUT: E a set of pairs of interpretations

3: E := ∅
// Extract interpretations

4: for each k from 1 to |T | do
5: T ′ := (S0, . . . , Sk) // the sub-trace of size k of T that start from S0

6: I := ∅
7: for each state sk′ before sk in T ′ do
8: delay := k − k′

9: for each atom a ∈ sk′ do
10: I := I ∪ {at−delay}
11: E := E ∪ (I, Sk)

12: return E

only needs to apply the least specialization by analyzing each pair of interpretations
(I, J) ∈ E. For each atom varval that does not appear in J , it infers an anti-
rule: RI

varval := varval ←
∧

Bi∈I Bi, Then, least specialization is used to make each

corresponding logic program P ′i consistent with RI
varval , according to the delay of

interpretation transition. Algorithm 5 shows the pseudo code of this operation. In the

Algorithm 5 specialize(P ,R,B) : specialize P to avoid the subsumption of R

1: INPUT: a logic program P , a rule R, a set of atoms B
2: OUTPUT: the least specialization of P by R.

3: conflicts : a set of rules
4: conflicts := ∅

// Search rules that need to be specialized
5: for each rule RP ∈ P do
6: if RP subsumes R then
7: conflicts := conflicts ∪ RP

8: P := P \ RP

// Revise the rules by least specialization
9: for each rule Rc ∈ conflicts do
10: for each literal varval

t−k ∈ b(R) do

11: if varval
t−k /∈ b(Rc) then

12: for each varval′
t−k ∈ B, val

′ 6= val do

13: R′c := (h(Rc)← (b(Rc) ∪ varval′
t−k))

14: if P does not subsume R′c then
15: P := P\ all rules subsumed by R′c
16: P := P ∪ R′c
17: return P

function specialize, it first extracts all rules RP ∈ P that subsumes RI
A. It generates

the least specialization of each RP by generating a rule for each literal in RI
varval . Each

rule contain all literals of RP , plus a literal that represents another value of the variable

represented by a literal in RI
varval , so that RI

varval is not subsumed anymore by that
rule. Then specialize adds in P all the generated rules that are not subsumed by P ,
so that P becomes consistent with the transition (I, J).

3) After analyzing all traces of O, the k programs that have been learned are merged
into a unique logic program while taking care that subsumed rules are discarded. 4) All
rules that are not necessary to explain the observations are discarded. The algorithm
only keeps the rules that can be used to realize at least one of the transition of the
input traces. Finally, LFkT outputs a logic program that realizes all consistent traces
of execution of O.

A.2 Proof of Theorem 1 (Correctness of LFkT)

Let P be a logic program, B be the Herbrand base of P and Bk be the timed Herbrand
base of P with period k. Let S be a Markov(k) system with respect to P . Let O be
a set of trace of S. Using O as input, LFkT output a logic program that realizes all
consistent traces of O.

Proof. Let V be the vector of interpretation transition extracted from O by LFkT
(Algorithm 4). According to Theorem 4 of [10], initializing LF1T with {p.|p ∈ B},
by using minimal specialization iteratively on a set of interpretation transitions E,
we obtain a logic program P that realizes E. Since LFkT uses this method on each
element of V , LFkT learns a vector of logic programs P ′ such that each logic program
p′n ∈ P ′ realizes the corresponding set of interpretation transitions vn ∈ V , n ≥ 1.

Let p′n ∈ P ′ be the logic program learn from vn ∈ V , n ≥ 1. p′n is obtained
by minimal specialization of {p.|p ∈ B} with all anti-rule of vn (non consistent rule).
According to Theorem 3 of [10], p′n does not subsume any anti-rule that can be inferred
from vn. Then, p′n realizes all deterministic transition of vn, that is ∀(I, J) ∈ vn, 6
∃(I, J ′), J 6= J ′.

Since vn contains n-step interpretation transition that represent all sub-traces of
size n of O, p′n realizes all consistent sub-trace of size n of O. Let Pn−1 be a logic
program that realizes all consistent sub-traces of size at most n−1 of O. p′n can contain
a rule R such that (Bn \Bn−1)∩ b(R) = ∅ (no literal of R refers to the t−n state of the
variables). In this case R realizes a sub-trace of size n and also some sub-traces of size
at most n− 1. If these sub-traces of size n− 1 are consistent, then they are necessary
realized by Pn−1. Pn−1∪{R} does not realize more consistent sub-trace of size at most
n − 1 than Pn−1. Let SR be the set of rules of p′n of the form R, then (p′n \ SR) only
realizes all sub-traces of size n of O. Then the logic program Pn = Pn−1 ∪ (p′n \ SR)
only realizes all consistent sub-trace of size at most n − 1 of O and all sub-traces of
size n of O, that is Pn realizes all consistent sub-traces of size at most n of O.

Let p′1 ∈ P ′ be the logic program learned from v1 ∈ V , and let P = p′1. Let R′ be
all rules of the logic program p′n such that (Bn \ Bn−1) ∩ b(R′) 6= ∅. Iteratively adding
rules R′ into P , starting by the logic program p′2 until p′k, we obtain a logic program
that realizes all consistent sub-traces of size at most k of O. As a result, using O as
input, LFkT outputs a logic program that realizes all consistent traces of O. ut

A.3 Proof of Theorem 2 (Complexity of LFkT)

Let P be a logic program, B be the Herbrand base of P and Bk be the timed Herbrand
base of P with period k. Let S be a multi-valued Markov(k) system with respect to
P . Let n be the number of variables of S. Let v be the maximal number of values
of a variable of S. Let O be a set of traces of execution of S. The complexity of
learning S from O with LFkT is respectively: O(n · vnk+1 + |O|) for memory and
O(

∑
T∈O
|T | · nvnk+3 + |O| ∗ n2k2 + n · vnk+2 + n · vnk+1 · |O| · k) for runtime.

Proof. n is the number of possible heads of rules of S. nk is the maximum size of a
rule of S, i.e. the number of literals in the body; a literal can appear at most one time
in the body of a rule. For each rule head of B there are vnk possible bodies: each literal
can be present or absent from the body. From these preliminaries we conclude that
the size of a Markov(k) system S learned by LFkT is at most |S| = n · vnk. To learn
S, LFkT needs to store k programs Pi that are Markov(i) system with respect to P ,
1 ≤ i ≤ k. The algorithm also needs to store the previously analyzed traces in order to
update the considered delay.

Conclusion 1: the memory use of LFkT is O(
k∑

i=1

|Pi| + O) = O(k · n·v
nk

k
+ |O|)

that is bound by O(n · · · vnk+1 + |O|).
For each trace T of O, LFkT extracts |T | pairs of interpretations. For each pair of

interpretation (I, J), LFkT infers an anti-rule rule RI
A for each A ∈ B, A 6∈ J . LFkT

compares each RI
A with all rules of each programs Pi. There is at most |B|−n anti-rules

that can be infered from (I, J) by LFkT and the size of each program Pi is bound by

O(n·vnk

k
). Then, the complexity of learning one trace of execution T ∈ O with LFkT

is O(|T | · |B|−n · k|Pi|) = O(|T | ·nv−n · k n·vnk

k
) = O(|T | ·n2vnk+2−n) that is bound

by O(|T | · nvnk+3). To update the considered delay, the algorithm has to check the
delay of each new trace T , this operation belongs to O(|T |2) = (n2k2). And, checking
the consistency of a new traces with previous analyzed ones is bound by O(|O| ∗n2k2).
Merging the programs requires to compare all rules to detect subsumption, it has a
complexity of O(n ·vnk+2). Finally, removing the rules that are not necessary to realize
O requires to compare each rule with all k-step interpretations of O, thus it requires
O(n · vnk+1 · |O| · k).

Conclusion 2: The complexity of learning S from O with LFkT is O(
∑

T∈O
|T | · nvnk+3+

|O| · n2k2 + n · vnk+2). ut

	Learning Multi-Valued Biological Models with Delayed Influence from Time-Series Observations

