
Yet Another Parallel Hypothesis Search for
Inverse Entailment

Hiroyuki Nishiyama and Hayato Ohwada

Faculty of Sci. and Tech. Tokyo University of Science†,
2641 Yamazaki, Noda-shi,
CHIBA, 278-8510, Japan

hiroyuki@rs.noda.tus.ac.jp, ohwada@rs.tus.ac.jp,

Abstract. In this study, we design and implement a powerful Induc-
tive Logic Programming (ILP) system to conduct a parallel hypothesis
search for inverse entailment. One of the most important parts of ILP
is speeding up the hypothesis search, and a number of parallel hypothe-
sis exploration methods have been proposed. Recently, the Map-Reduce
algorithm has been used for large-scale distributed computing, but it is
difficult to apply such cloud technology to the ILP hypothesis search
problem. By contrast, we designed a method that can dynamically dis-
tribute tasks for the hypothesis search, and implemented a network sys-
tem in which modules autonomously cooperate with each other. We also
conducted a parallel experiment on a large number of CPUs. Results
confirm that the hypothesis search time is shortened according to the
number of computers used, without reducing the optimality of the gen-
erated hypothesis.

1 INTRODUCTION

Recently, various analytical approaches to a large amount of data have been
developed. For example, the Map-Reduce model consists of a large number of
workers and one master, and uses on-line distributed-computing for quick analy-
sis. However, Map-Reduce has limited efficiency. With Inductive Logic Program-
ming (ILP) [2], which uses artificial intelligence, we can induce the cause (rules)
by searching for relationships in information in the results (resulting events).
However, searching for relationships in information is not efficient distributed
processing in the Map-Reduce scheme, because new relationships are found after
searching for relationships in background knowledge to generate rules. Therefore,
the application of ILP for large data is not realistic because ILP requires much
learning time. To solve this problem, various studies have been conducted in an
effort to speed up ILP [1, ?,?]. Although the problems were partially solved, the
process was not sufficiently sped up based on the number of processors provided,
and the quality of the generated rules was not optimal, resulting in difficulty in
its use as a practical tool.

Considering these issues, we designed and implemented a new parallel pro-
cessing system for ILP. With this system, the worker itself has an autonomous



2 Yet Another Parallel Hypothesis Search for Inverse Entailment

Worker

Module

Master

Module

Server

Module

Worker

Module

Worker

Module

ILP

Module

ILP

Module

ILP

Module
…

Network

Fig. 1. System configuration of the ILP parallel computation system

function, unlike Map-Reduce. When a worker has no task (e.g., immediately
after start-up or immediately after completion of a task), the worker accepts a
divided task from another worker and starts the task. When the workload (the
number that the worker must search for relationships in information) reaches a
fixed quantity, the worker requests other workers to process the divided task.
After the request for the first task issued by a master is implemented for one
worker, autonomous process distribution is started among workers, and all ex-
isting workers are engaged (saturation of the task). Because the divided task
continues to be repeated among workers, all workers finally complete all pro-
cessing at approximately the same time, and the master receives the processing
result (generated rules).

Our parallel processing system has the following features.

– 1: The master does not need to consider the division of the process in ad-
vance, as the master of the Map-Reduce scheme does.

– 2: All workers work until the end (no free time).

The first feature indicates that the proposed system does not require pre-
division processing of the master, which is used in conventional Map-Reduce. The
second feature means that speedup can be achieved. In our study, we implement
the proposed parallel ILP system and demonstrate its effectiveness by conducting
parallel-learning experiments using drug discovery data.

2 SYSTEM DESIGN

2.1 System Configuration

Our ILP parallel-processing system consists of four modules (Fig.1). We designed
each module as follows.
　

– Server module for negotiation between modules
The server module mediates negotiation messages (e.g., ”request,” ”accept,”
and ”commit”) regarding the task shared by workers. This module broad-
casts to connected workers and the master. This function is used during
negotiation to find an acceptor of the divided task.



Yet Another Parallel Hypothesis Search for Inverse Entailment 3

– Master Module
The master module sends a task (main task) request to the worker mod-
ule (worker) and collects results (generated rules) from the worker module
when all divided tasks of the worker modules are finished. By connecting
with the server module, this module can negotiate with worker modules and
collect the negotiations between worker modules to recognize the processing
situation of all worker modules.

– Worker Module
The worker module manages an ILP module and negotiates with other
worker modules via the server module. When this module has no task, it
accepts the shared task from other worker modules, transfers the task data
to its own ILP module, and starts learning. In addition, this module sends a
request message for the shared task to other workers when the ILP module
needs to divide the task.

– ILP Module
Basically, the ILP module has the same functions as in traditional ILP.
Receiving task data from the worker module, the ILP module starts the
learning process. It searches for generating rules; thus, the amount of search
processing that this module must perform increases. If the amount of search
processing exceeds a threshold, this module divides the search processing
and generates a divided task. It then sends a request for the divided task to
the worker module. In addition, when all search processing (its own learning
process) is finished and the requesting task exists (waiting for an ”accept”
response), this module cancels the request of the task via the worker module
and starts the task itself. When all search processing is finished and the
requesting task no longer exists, this module declares the end of the task to
the worker modules. As a result, this module starts other divided tasks from
other worker modules.

2.2 Communication Protocol Between Modules

In our system, a master module communicates with worker modules and worker
modules communicate with each other via the network (Fig. 1). We prepared two
communication protocols. One is the ”Negotiations Protocol between Modules”
to find a worker module that can execute a task (main task or divided task).
The other is the ”Task Content Transmission Protocol” to send task contents to
a worker. The details of each protocol are as follows.

– Protocol 1. Negotiations Protocol between Modules
This protocol communicates via the server module. All messages are broad-
cast to all worker modules and a master module. This protocol is used for
negotiation messages (e.g., ”request,” ”accept,” and ”commit”) to find a
worker module that can execute a task.

– Protocol 2. Task Content Transmission Protocol
After a worker module is determined by protocol 1, protocol 2 is used for
transmitting the task contents to the module. Communication between mod-



4 Yet Another Parallel Hypothesis Search for Inverse Entailment

ules is carried out by peer-to-peer communication (not via the server mod-
ule).

As a result, all worker and ILP modules perform a task by repeatedly re-
questing shared tasks (i.e., saturation of the divided task). In the saturation
state, all worker modules send ”request” messages regarding the shared task to
other worker modules and await an ”accept” message. Conversely, each worker
module is ready to receive a request task from all other worker modules. Thus,
a worker module that has finished its own task sends an ”accept” message to
another worker module and receives a new shared task.

Shared tasks are requested and received until a learning rule is generated. As
a result, worker and ILP modules operate without spare time.

3 IMPLEMENTATION AND EXPERIMENT

In the present study, we implemented a rule generation engine for ILP [2] and
each module described above using the Java programming language. In addition,
in this implementation experiment, we temporarily set the threshold (number of
searches to be conducted) at 200 for the division request in the ILP module. We
used two 6-CPU computers and two 4-CPU computers in our parallel processing
experiment.

3.1 Speedup Experiment

We used two 6CPU computers to conduct an experiment to measure speedup
and used middle-scale data on drug discovery analysis as training data. One
by one, we increased the number of CPUs from 1 to 12, and performed 12
experiments. In our system, a worker module (and an ILP module) used one
CPU. The experiment results are presented in Table 1. We obtained a speedup
of 7.4 using a 12-CPU unit for this exercise. However, this problem was small-
scale and did not provide enough speedup.

3.2 Large-Scale Parallel Experiment

Using four computers, we performed application experiments on a large-scale
example of a drug discovery problem. In this experiment, we used 1 CPU, 12
CPUs (two 6-CPU computers), and 20 CPUs (two 6-CPU computers + two 4-
CPU computers) in a total of three experiments. The experiment results (Table
2) confirmed that speedup corresponded to the number of CPUs used. For this
drug-discovery problem, it conventionally took at least 15h using a parallel-
processing system; however, with our proposed method, one learning process
required less than 1h. Thus, experiments can be easily reconducted by adjusting
the parameters and can achieve better research results.



Yet Another Parallel Hypothesis Search for Inverse Entailment 5

Table 1. Parallel experiments using 12 CPUs (two 6CPU computers)

The Number of CPU Processing time(sec.) Speedup

1 724 1.000
2 387 1.871
3 269 2.691
4 218 3.321
5 192 3.771
6 174 4.161
7 146 4.959
8 131 5.527
9 116 6.241
10 107 6.766
11 102 7.098
12 98 7.388

Table 2. Parallel experiments using 20 CPUs (two 6-CPU computers and two 4-CPU
computers)

The Number of CPU Processing time(sec.) Speedup

1 56372 1.000
12 5723 9.850
20 3563 15.821

4 DISCUSSION

For the above parallel processing experiments, we measured the communica-
tion time and processing steps between workers to investigate how the workers
(worker module and ILP module) depend on each CPU. For this measurement,
we used six workers and one 6-CPU computer. In this reconducted experiment,
we implemented measuring functions on each module. Thus, the processing time
is longer than in the experiment results using 6 CPUs (Table 1).

We measured the time required for learning and for receiving the task data
of each worker. Table 3 lists the processing time of each worker. The end time
for all tasks is 205.69sec.

Table 3. Learning time and receiving time of each worker in the parallel-processing
experiment using six workers (6 CPUs) (sec)

Worker ID 1 2 3 4 5 6 Average

Learning time 195.62 194.98 196.95 193.52 194.22 190.86 194.36
Receiving time 5.47 5.49 4.62 6.22 8.05 8.08 6.32

Total operation time 201.10 200.47 201.58 199.74 202.28 198.94 200.68



6 Yet Another Parallel Hypothesis Search for Inverse Entailment

Table 4. Learning time and receiving time of each worker in the parallel-processing
experiment using six workers (6 CPUs) (%)

Worker ID 1 2 3 4 5 6 Average

Learning time 95.10 94.79 95.75 94.08 94.42 92.79 94.49
Receiving time 2.66 2.67 2.25 3.02 3.92 3.93 3.07

Total operation time 97.77 97.46 98.00 97.11 98.34 96.72 97.57

Table 3 indicates the processing time of each worker. We confirmed that each
worker spent an average of 94In a previous study [3], much time was necessary
for sending and receiving between workers. In the present study, we successfully
shortened the time required for sending and receiving, because the implementa-
tion of the proposed system used the object communication function and serialize
function of Java API.

5 CONCLUSIONS

In the present study, we designed and implemented a parallel system of Induc-
tive Logic Programming (ILP) to realize a parallel hypothesis search for inverse
entailment. The hypothesis generation of ILP requires search processing, and
the result of the hypothesis generation influences the next hypothesis genera-
tion. Thus, ILP cannot be parallelized using the Map-Reduce method that was
developed based on cloud technology. To address these issues, we designed a
method that can dynamically distribute tasks for search processing, and imple-
mented a network system in which modules autonomously cooperate with each
other. In addition, we enabled parallel experimentation using a large number of
workers (CPUs). Results confirmed that we shortened the processing time de-
pending on the number of computers used, without reducing the quality of the
rule generated.

References

1. Andreas Fidjeland, Wayne Luk and Stephen Muggleton: Customisable Multi-
Processor Acceleration of Inductive Logic Programming, Latest Advances in In-
ductive Logic Programming, pp. 123-141, 2014.

2. Fumio Mizoguchi and Hayato Ohwada: Constrained Relative Least General Gen-
eralization for Inducing Constraint Logic Programs, New Generation Computing
13, pp. 335-368, 1995.

3. Hayato Ohwada, Hiroyuki Nishiyama and Fumio Mizoguchi: Concurrent Execution
of Optimal Hypothesis Search for Inverse Entailment, Inductive Logic Program-
ming, Lecture Notes in Computer Science Vol. 1866, pp. 165-173, 2000.

4. Ashwin Srinivasan: Parallel ILP for distributed-memory architectures, Machine
Learning, Vol. 74, Issue 3, pp 257-279, 2009.


