
Mine ’Em All: A Note on Mining All Graphs

Ondřej Kuželka1 and Jan Ramon2

1 School of Computer Science & Informatics, Cardiff University, UK
KuzelkaO@cardiff.ac.uk

2 Department of Computer Science, KU Leuven, Belgium
jan.ramon@cs.kuleuven.be

Abstract. We study the complexity of the problem of enumerating all
graphs with frequency at least 1 and computing their support.

1 Introduction

We study graph mining problems from a nontraditional perspective. We are in-
spired by the question which properties of the problem make some graph mining
problems solvable in incremental polynomial time or with polynomial delay3.
Here, we do not require the discovered graph patterns to be frequent and we
want to output all patterns occurring in at least one database graph. However,
we still want to also output their occurrences. In addition, we constrain the or-
der in which the patterns should be printed, e.g. from most frequent patterns
to least frequent patterns, which allows us to connect our results to results on
(in)frequent graph mining. Surprisingly, for several graph classes, we show that
different orders lead to very different computational complexities. For instance
mining planar graphs cannot be done in incremental-polynomial time when the
output graphs should be ordered by frequency but it can be done with polynomial
delay when they should be ordered from largest to smallest.

2 Preliminaries

Graphs. An undirected graph is a pair (V,E), where V is a finite set of vertices
and E ⊆ {e ⊆ V : |e| = 2} is a set of edges. A labeled undirected graph is a
triple (V,E, λ), where (V,E) is an undirected graph and λ : V ∪ E → Σ is a
function assigning a label from an alphabet Σ to every element of V ∪ E. A
graph G′ is a subgraph of a graph G, if V (G′) ⊆ V (G), E(G′) ⊆ E(G), and
λG′(x) = λG(x) for every x ∈ V (G′) ∪ E(G′); G′ is an induced subgraph of G if
it is a subgraph of G satisfying {u, v} ∈ E(G′) if and only if {u, v} ∈ E(G) for
every u, v ∈ V (G′). Graphs G and G′ are isomorphic if there exists a bijection
π : V (G)→ V (G′) such that {u, v} ∈ E(G) if and only if {π(u), π(v)} ∈ E(G′).
Graph canonization is a function from graphs to strings such that two graphs
have the same canonization if and only if they are isomorphic. Graphs G and G′

3 A longer version of this paper with proofs is available from https://goo.gl/NRrYAF.

2 O. Kuželka and J. Ramon

are isomorphic if there exists a bijection π : V (G) → V (G′) such that {u, v} ∈
E(G) if and only if {π(u), π(v)} ∈ E(G′). Graph canonization is a function from
graphs to strings such that two graphs have the same canonization if and only if
they are isomorphic. We say that a graph G1 is (induced) subgraph isomorphic to
a graph G2 if G1 is isomorphic to an (induced) subgraph of G2. There are graph
classes, e.g. bounded-treewidth graphs or planar graphs, for which isomorphism
can be decided in polynomial time but for which subgraph isomorphism is NP-
complete [5]. We are mostly interested in such classes because for them it is not
obvious whether fast graph mining algorithms exist.

3 Graph Mining Problems

A transaction database is a a multiset of graphs from a given class G. Given a
pattern matching operator 4 (subgraph isomorphism or induced subgraph iso-
morphism), the frequency of a graph G in a transaction database DB, denoted
by freq(G,DB), is given as freq(G,DB) = |{G′ ∈ DB|G 4 G′}|. Given a thresh-
old t, G is said to be frequent if freq(G,DB) ≥ t. The elements of the multiset
{G′ ∈ DB|G 4 G′} are called occurrences of the graph G in the database DB.

Definition 1 (The Frequent Connected Graph Mining (FCGM) Prob-
lem). Given a class G of graphs, a transaction database DB of graphs from G,
a pattern matching operator 4, and frequency threshold, list the set of frequent
connected graphs G ∈ G and their occurrences.

In this paper, we are interested in another closely related type of problem which
is to mine all graphs with frequency at least one in certain order.

Definition 2 (The Ordered Mining Problems). Given a class G of graphs,
a transaction database DB of graphs from G and a pattern matching operator
4, list the set of connected graphs G ∈ G with freq(G,DB) ≥ 1 and their oc-
currences in the transactions in the given order4: (i) from most frequent to least
frequent (ALLF→I problem), (ii) from least frequent to most frequent (ALLI→F

problem), (iii) from smallest size to largest size (ALLS→L problem), and (iv)
from largest size to smallest size (ALLL→S problem). Here size of a graph G
refers to |V (G)|+ |E(G)| when 4 is subgraph isomorphism and to |V (G)| when
4 is induced subgraph isomorphism.

The parameter of the above problems is the size of DB. For some input I,
let O be the output set of some finite cardinality N . Then the elements of O,
say o1, . . . , oN , are listed with: a) polynomial delay if the time before printing o1,
the time between printing oi and oi+1 for every i = 1, . . . , N − 1, and the time
between printing oN and the termination is bounded by a polynomial of the size
of I, b) incremental polynomial time if o1 is printed with polynomial delay, the
time between printing oi and oi+1 for every i = 1, . . . , N − 1 (resp. the time

4 ALLF→I stands for ’frequent to infrequent’, ALLI→F stands for ’infrequent to fre-
quent’, ALLS→L stands for ’small to large’ and ALLL→S stands for ’large to small’.

A Note on Mining All Graphs 3

between printing oN and the termination) is bounded by a polynomial of the
combined size of I and the set {o1, . . . , oi} (resp. O), c) output polynomial time
(or polynomial total time) if O is printed in time polynomial in the combined
size of I and the entire output O.

Remark 1. There is an incremental-polynomial-time algorithm for the FCGM
(FCIGM) problem if and only if there is an incremental-polynomial time algo-
rithm for ALLF→I with (induced) subgraph isomorphism as a pattern matching
operator.

4 Mining All (Induced) Subgraphs

4.1 Negative Results

In this section, we provide several negative results regarding complexity of some
of the enumeration problems considered in this paper. The first theorem connects
the hardness of the frequent subgraph enumeration problem to fixed-parameter
tractability of the pattern matching operator (subgraph isomorphism or induced
subgraph isomorphism).

Theorem 1. Let G be a class of graphs. Let 4 be either subgraph isomorphism or
induced subgraph isomorphism. If deciding H 4 G where G,H ∈ G is not fixed-
parameter tractable with the parameter |H| then ALLF→I and ALLS→L cannot
be solved in incremental polynomial time.

However, there are also graph classes with FPT subgraph isomorphism, e.g.
planar graphs [4], for which ALLF→I cannot be solved in incr.-poly. time.

Theorem 2. The problem ALLF→I cannot be solved in incremental polynomial
time for the class G of planar graphs.

This theorem is interesting because in Section 4.2, we will see that the problem
ALLL→S can be solved with polynomial delay for planar graphs.

Even stronger result can be obtained for the problem ALLI→F .

Theorem 3. Let G be a class of graphs. Let 4 be either subgraph isomorphism
or induced subgraph isomorphism. If deciding H 4 G where G,H ∈ G is NP-hard
then ALLI→F cannot be solved in incremental polynomial time (unless P = NP).

Using the fact that (induced) subgraph isomorphism is NP-complete even for
bounded-treewidth graphs [5] and planar graphs [4], we can obtain the following.

Corollary 1. The problem ALLI→F cannot be solved in incremental polynomial
time for the class of planar graphs and for the class of bounded-treewidth graphs.

Note that Theorem 1 cannot be made as strong as Theorem 3 (i.e. showing
that ALLF→I cannot be solved in incremental-polynomial time if the pattern
matching operator is NP-hard) because the results of Horváth and Ramon from
[2] demonstrate that even if the pattern matching operator is NP-hard there can
be an incremental-polynomial-time algorithm for mining frequent subgraphs.
Theorem 3 shows that we cannot expect such a result for mining infrequent
subgraphs (i.e. subgraphs with frequency below a threshold).

4 O. Kuželka and J. Ramon

4.2 Positive Results for ALLF→I and ALLS→L

Before presenting our new results for ALLL→S in the next section, we note that
there exists the following positive result for frequent graph mining from bounded-
treewidth graphs, which was presented in [2].

Theorem 4 (Horváth and Ramon [2], Horváth, Otaki and Ramon [1]).
The FCGM and FCIGM problems can be solved in incremental-polynomial time
for the class of bounded-treewidth graphs.

This result directly translates to a positive result for the problem ALLF→I

summarized in the following corollary (recall that we have shown in the previ-
ous section that ALLI→F cannot be solved in incremental-polynomial time for
bounded-tree-width graphs) and to a result for the problem ALLS→L (this other
result follows from the fact that the respective algorithms are level-wise).

Corollary 2. The problems ALLF→Iand ALLS→L can be solved in incremental-
polynomial time for the class of bounded-treewidth graphs.

4.3 Positive Results for ALLL→S

In this section, we describe an algorithm called LargerToSmaller (Algo-
rithm 1) which, when given a class of graphs G in which isomorphism can be de-
cided in polynomial time, solves the problem ALLL→S in incremental-polynomial
time. The main employed trick is the observation that for the problem ALLL→S

it is not necessary to use subgraph isomorphism for computing occurrences of
graphs in a graph database.

The algorithm maintains a data structure ALL storing key-value pairs where
keys are graphs and values are sets of IDs5 of graphs in which the given key
graph is contained either as a subgraph or as an induced subgraph (depending on
whether we are mining subgraphs or induced subgraphs). The data structure pro-
vides four functions: ADD(K,OCC,ALL), GET(K,ALL), KEYS(n,ALL), and
DELETE(n,ALL) .

The function ADD(K,OCC,ALL) adds the IDs contained in OCC to the set
associated with a key contained in ALL which is isomorphic to K or, if no such
key is contained in ALL, the function stores K in ALL and associates OCC with
it. If we restrict attention to graphs from a class G for which a polynomial-time
canonization function running in O(p(|H|)) exists (where p is a polynomial) then
the function ADD(K,OCC,ALL) can be implemented to run in time O(p(|K|))
(we can just store the key graphs as canonical strings, therefore a hashtable
with constant-time methods for finding and adding values by their keys can
be used). If a polynomial-time canonization function does not exist but graph
isomorphism can be decided in time O(piso(|K|)) where piso is a polynomial then
the function ADD(K,OCC,ALL) can be implemented to run in time O(|{K ′ ∈
KEY S(ALL) : |V (K ′)| = |V (K)| and |E(K ′)| = |E(K)|}| · piso(|K|)).
5 Here, IDs are just some identifiers given to the database graphs.

A Note on Mining All Graphs 5

Algorithm 1 LargerToSmaller
Require: database DB of transaction graphs
Ensure: all connected (induced) subgraphs and their occurrences

1: let ALL be a data structure for storing graphs and their occurrences (as described in the main
text).

2: for G ∈ DB do
3: ADD(G, {ID(G)}, ALL)
4: endfor
5: let m be the maximum order8 of a graph in DB.
6: for (l := m; l > 0; l := l− 1) do
7: for H ∈ KEYS(l, ALL) do
8: OCC ← GET(H,ALL)
9: PRINT(H,OCC)

10: for H′ ∈ REFINE(H) do
11: if H′ is connected then
12: ADD(H′, OCC,ALL)
13: endif
14: endfor
15: endfor
16: DELETE(l, ALL)
17: endfor

The function GET(K,ALL) returns all IDs associated with a key isomorphic
to K. The exactly same consideration as for the function ADD apply also for
this function.

The function KEYS(n,ALL) returns a pointer to a linked list containing all
key graphs stored in ALL which have size n. Note that since the data structure
ALL does not allow deletion of keys, it is easy to maintain such a linked list6.

Finally, the function DELETE(n,ALL) removes the pointer7 to the linked list
containing all key graphs of order n stored in ALL.

The algorithm LargerToSmaller fills in the data structure ALL, starting
with the largest graphs and proceeding to the smaller ones. When it processes
a graph H, it first prints it and the IDs of the graphs associated to it in the
data structure ALL, and then it calls the function REFINE which returns all
connected subgraphs H ′ of H which can be obtained from H by removing an
edge or an edge and its incedent vertex of degree one (in the case of subgraph
mining), or just by removing a vertex and all its incident vertices (in the case
of induced subgraph mining). It then associates all occurrences of the graph H
with the graphs H ′ in the datastructure ALL using the function ADD. Since
the same graph H ′ may be produced from different graphs H, the occurrences
of H ′ accumulate and we can prove that when a graph H is printed, the data
structure ALL already contains all IDs of graphs in which H is contained.

Theorem 5. Let G be a hereditary class of graphs with isomorphism decidable
in polynomial time. Given a database DB of graphs from G, the algorithm Larg-

6 The reason why the function KEYS does not just return all the key graphs but rather
a pointer to the linked list is that if it did otherwise, Algorithm 1 could never run
with polynomial delay

7 Note that we just remove the pointer and do not actually “free” the memory occupied
by the graphs. For the practical implementation, we used a programming language
with a garbage collector.

6 O. Kuželka and J. Ramon

erToSmaller solves the problem ALLL→S in incremental polynomial time. If
the graphs from G also admit a poly-time canonization then the algorithm Larg-
erToSmaller solves the problem ALLL→S with polynomial delay.

Using the results on complexity of graph canonization for planar [6] and bounded-
treewidth graphs [3], we can get the following corollary.

Corollary 3. The problem ALLL→S can be solved with polynomial delay for the
classes of planar and bounded-treewidth graphs.

The following theorem asserts that the results for the problem ALLL→S are
essentially optimal w.r.t. incremental polynomial time.

Theorem 6. The problem ALLL→S can be solved in incremental-polynomial
time for graphs from a hereditary class G if and only if graph isomorphism can
be decided in polynomial-time for graphs from G.

5 Concluding Remarks

Most of the theorems presented here can be generalized for mining under (in-
duced) homeomorphism and minor embedding. Even with a simple implementa-
tion of the algorithm for the ALLL→S problem, we were able to mine completely
about 70% molecules from NCI GI dataset.

Acknowledgement. This work has been supported by ERC Starting Grant
240186 “MiGraNT: Mining Graphs and Networks, a Theory-based approach”.
The first author is supported by a grant from the Leverhulme Trust (RPG-2014-
164).

References

1. T. Horváth, K. Otaki, and J. Ramon. Efficient frequent connected induced subgraph
mining in graphs of bounded tree-width. In Machine Learning and Knowledge Dis-
covery in Databases - European Conference, ECML PKDD 2013, pages 622–637,
2013.

2. T. Horváth and J. Ramon. Efficient frequent connected subgraph mining in graphs
of bounded tree-width. Theor. Comput. Sci., 411(31-33):2784–2797, 2010.

3. D. Lokshtanov, M. Pilipczuk, M. Pilipczuk, and S. Saurabh. Fixed-parameter
tractable canonization and isomorphism test for graphs of bounded treewidth. In
55th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014,
pages 186–195, 2014.

4. D. Marx and M. Pilipczuk. Everything you always wanted to know about the
parameterized complexity of subgraph isomorphism (but were afraid to ask). In
31st International Symposium on Theoretical Aspects of Computer Science (STACS
2014), STACS 2014, pages 542–553, 2014.

5. J. Matoušek and R. Thomas. On the complexity of finding iso- and other morphisms
for partial k-trees. Discrete Mathematics, 108(1-3):343–364, 1992.

6. J. Torán and F. Wagner. The complexity of planar graph isomorphism. Bulletin of
the EATCS, 97:60–82, 2009.

