Inductive Logic Programming
Using a MaxSAT Solver

Noriaki Chikara®, Miyuki Koshimura?, Hiroshi Fujita?, and Ryuzo Hasegawa?

! National Institute of Technology, Tokuyama College,
Gakuendai, Shunan, Yamaguchi 745-8585, Japan
tikara@tokuyama.ac. jp
2 Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
{koshi, fujita, hasegawa}@inf.kyushu-u.ac.jp

Abstract. Inductive Logic Programming (ILP) is a method of machine
learning which is based on predicate logic. In this work, we propose a new
method that transforms a problem of ILP into that of MaxSAT. MaxSAT
is an optimization version of SAT. It finds an variable assignment that
maximizes the number of satisfied clauses.

1 Introduction

Inductive Logic Programming (ILP) is a method of inductive learning which
uses logic programming. It is able to learn directly from complex data. ILP
has a wide variety of applications, for example, toxicity prediction of chemical,
natural language processing, web mining, and so on.

MaxSAT is an extension of Satisfiability Testing (SAT) so as to satisfy clauses
as many as possible. Recently, there has been a lot of progress in SAT/MaxSAT
solvers and they have been applied, in many cases with remarkable success, to
a number of applications.

In this study, we propose a method which transforms a problem of ILP into
that of MaxSAT in order to utilize state-of-the-art MaxSAT solver. We give
a syntactical restriction on the ILP problem while mimic the search in Progol
and Aleph which are used for many practical applications. In addition, each
ILP problem is preprocessed before the transformation in order to prevent the
size of the transformed problem growing up. Kondo and Yamamoto[1] proposed a
method which solves ILP with SAT solver. Their method is based on a declarative
view on ILP while our method is based on an operational view on practical ILP
systems.

2 Inductive Logic Programming

This section outlines Inductive Logic Programming (ILP) and a search method
used in ILP systems.

2.1 Framework of Inductive Logic Programming

Inductive Logic Programming (ILP)[2] is a method of inductive learning based
on predicate logic. ILP uses logic programming as an uniform representation of
background knowledge and hypotheses. Given an encoding of the known back-
ground knowledge B, a set of positive examples ET, and a set of negative ex-
amples E~ which satisfy the following relations:

B ET (1)
BUE™ 0O (2)

An ILP system will derive a hypothesized logic program which satisfies the
following relations:
HUBEE" (3)
HUBW E~ (4)
The relations from (1) to (4) indicate that (1) ET cannot be derived from B

only, (2) B and E~ don’t conflict, (3) ET can be derived from B plus H, and
(4) E~ can’t be derived from B plus H

2.2 A Search Method of Inductive Logic Programming

Many ILP systems extract multiple hypotheses with a cover set algorithm so as
to cover all positive examples. The algorithm of the typical ILP systems such as
Aleph[3] and Progol[4] is as follows, where B is the background knowledge, H is
hypotheses, and E is a set of positive examples. H is initialized to ().

(1) If E = @, then output H.
(2) Let e be an example in E.

(3) Generate a MSH from e and B.

(4) Generate the best hypothesis H' with a top-down search.

(5) H:=HUH".

(6) E':={e'| e’ € Eand BUH' =¢'}.

(7) Goto (1).

In (3), MSH refers the most specific hypotheses that are used to restrict the
following top-down search to hypotheses related to MSH. MSH are the most
weakest hypotheses to explain the example. Here, the weaker a hypothesis is,
the less it explains. Generally, a hypothesis consists of infinite literals. In order
to keep only finite literals, those ILP systems use mode declarations.

The top-down search in (4) is performed as follows: First, we start a most
general shortest hypothesis. Second, we add literals in MSH to the hypothe-
sis using a refinement operation under the restriction in which the literals are
connected by common variables. We generate the “best” hypothesis in (4). We
consider the hypothesis, which satisfies positive examples as many as possible,
does not satisfy negative examples and has literals in its body as less as possible,
is good one.

In this study, we use a MaxSAT solver for the top-down search in (4) and
the same refinement operation as that of Aleph and Progol.

2.3 Restricting ILP

In this study, we restrict ILP problems as follows: Arguments in the predicate
do not have structure, i.e. we consider only Datalog. All predicates are required
to having mode declarations. We also do not deal with negated atoms.

3 MaxSAT Encoding of ILP Problem

Boolean satisfiability testing (SAT) is the first problem of which NP complete-
ness has been proven. It is a basis of many problems in computer engineering
and artificail intelligence. MaxSAT([5] is an extension of SAT to solve an opti-
mization problem. A MaxSAT solver tries to find a variable assignment which
satisfies clauses as many as possible while a SAT solver finds the assignment
which satisfies all the clauses.

In this study, we make use of weighted partial MaxSAT (WPMS) in which
a problem is represented as a set of hard clauses and weighted soft clauses. A
WPMS solver tries to find a variable assignment which satisfies all the hard
clauses and maximizes the sum of weights of satisfied soft clauses. Before we
encode the problem with MaxSAT, we perform a preprocess that transforms
causality among literals in the MSH into a tree structure.

3.1 Preprocessing

A straightforward MaxSAT-encoding of ILP problems suffers from generating
exponential number of propositional variables and clauses with respect to the
number of MSH literals. To remedy this, we first construct a tree structure that
represent causality between MSH literals in the given problem.

First, let consider the case of generating a hypothesis H’ from a hypothesis
H by applying a refinement operation with a predicate p4/3 as follows:

H: head(A) :- p1(A,B), p2(A,C), p3(A,D)
| Refinement operation

H':head(A) :- p1(A,B), p2(A,C), p3(A,D), p4(B,E,F)

where the predicates p1(A,B) and p4(B,E,F) have a shared variable B. Such re-
finement operations are performed during the search of ILP. Unifiability between
p1(A,B) and a ground unit clause in the background knowledge B depends on
which ground unit clause in B is unified with p4(B,E,F). Fig. 1 shows a graph
which represents a causality of literals in H'.

We should notice that the graph has a tree structure. When we consider
the unifiabiliy between a node literal in such a tree, we have only to take care
of its descendant nodes locally. However, the refinement operation may violate
tree structures. For example, applying the refinement operation to H’ with a
predicate p5(C,D) makes a structure shown in the left graph of Fig. 2. The
structure is not a tree anymore.

(pian J[w20) (e)

Fig. 1. Causality graph of literals in the hypothesis

he (aA)
head(A head(A)

[9‘*3’][220) (3 | [> (uwaswuo] [nHD:]

p4BED.pscE)

Fig. 2. The transformation to tree structure in the case of causality loop exists

We group literals violating the tree structure. The literals are grouped ac-
cording to their distance from the head. We treat each group as a node in the
graph. The right tree of Fig. 2 is the result of such grouping. Thus, we keep tree
structure.

3.2 MaxSAT encoding

After the preprocessing, we obtain the most specific hypothesis MSH and the
corresponding tree structure. We make use of MaxSAT to generate the best hy-
pothesis H' from M SH. We consider the following two criteria on a hypothesis:
the number of positive examples covered by the hypothesis, and the number
of literals in the hypothesis. In this study, we exclude hypothesis that covers
negative examples.

In order to take the criteria into account, we introduce two predicates r(i, j)
and p(ex):

r(i,7) means that the j-th literal of the i-th literal group in M.SH appears in
H'.
p(ex) means that H' covers the ex-th positive example.

As we prefer the hypothesis having less literals in its body, we declare a negative
unit clause —r (i, j) as a soft clause having weight 1. We also prefer the hypothesis
covering more positive examples. So, we declare a positive unit clause p(ex) as
a soft clause having weight n 4+ 1 where n is the number of literals in M SH. In
this way, we respect the number of covered positive examples than the number
of literals in the hypothesis.

We introduce other several predicates for the MaxSAT encoding. We enu-
merate the primary predicates as follows:

a(i,bki) means that the i-th literal group in MSH is satisfied. Through bk,
we can find out ground unit clauses in the background knowledge which are
used for the satisfaction.

€(iq,bkiq,15) means that the necessary condition for a(i,, bki,) is satisfied in the
decendant nodes of the i,-th literal group in MSH.

n(ey) means that H' covers the ey-th negative example.

We also introduce several hard clauses that represent the relationship among the
predicates. In order to exclude the hypothesis that satisfies negative examples,
we declare a negative unit clause —n(ey) as a hard clause.

4 Experiment

We used Connect-4, Audiology and Molecular Biology (splice-junction gene se-
quences) data sets of UCI[6] for the experiment. Connect-4 is a two-player con-
nection game. Each data of Connect-4 has 42 attributes. We took the first 50
examples from 67,557 examples in the data set. They consist of 38 win examples,
5 draw examples, and 7 loss examples. We have succeeded in extracting seven
rules from 38 win examples, one rule from 5 draw examples, and one rule from
7 loss examples.

Each data of Audiology has 69 attributes. We randomly selected 100 examples
from 226 examples in the data set. The data set contain 20 cochlear age examples,
10 cochlear age and noise examples, 22 cochlear unknown examples, 2 mixed
cochlear age otitis media examples, and 5 possible menieres examples.

Molecular Biology data set is a database of primate splice-junction gene se-
quences (DNA) with associated imperfect domain theory. Each data of Molecular
Biology has 60 attributes. We randomly selected 200 examples from 3,190 ex-
amples in the data set. The data set contain 47 EI examples and 105 Neither
examples.

The experiment were carried out on Windows 7 (64bit). The processor is
2.6GHz Intel i7-2620M with 8 GB RAM. We use QMaxSAT[7] 14.04 (on cygwin
1.7.28) as a MaxSAT solver. We also used Java 1.8.0-40 for pre-processing and
post-processing and JavaCC as a parser.

Table 1 shows the experimental result. We used Aleph with YAProlog|8]
for comparison. With the default setting, Aleph sometimes fail to extract rules
because of the limit number of search nodes. In order to extract the same rule
as our method does, we adjusted the setting. Our method runs much faster
than Aleph for the draw examples. Our method seems to have advantage when
the length of the extracted rule is relatively long. On the other hand, when we
repeatedly extract short rules, the time for I/O of MaxSAT instances becomes
dominant factor for the whole processing time.

Table 1. The execution time of the experiment

Problem Target of Num. of |Max. Our method |Aleph+
positive examples|extracted|length of|(using YAProlog
rules extracted |[MaxSAT)
rules

win 7| 5 literals 1.501s 9.360s
Connect-4 draw 1| 7 literals 0.877s 56.566s
loss 1| 4 literals 0.970s 0.640s
cochlear_age 2| 6 literals 2.624s| 1m39.169s

cochlear_age_

Audiology > 1| 4 literals 2.530s 0.218s
and_noise
(Standardized) |cochlear_unknown 4] 6 literals 3.934s|10m47.807s
mixed-cochlear- 1| 3 literals 1.672s| 0.187s
age_otitis_media
possible_menieres 1| 2 literals 1.438s 0.172s
Molecular Biology EI 4| 5 literals 4.418s 0.328s
(Splice-junction Neither 14| 4 literals| 1m4.166s] 0.905s

Gene Sequences)

5 Conclusion

We proposed a new method that transforms a problem of ILP into that of
MaxSAT. We also provided a preprocess that converts an ILP problem to a tree
structure, thereby suppressing the size of MaxSAT encoding for it. Experimen-
tal results show that our method works faily well on a state-of-the-art MaxSAT
solver with reasonable additional cost for problem conversion. Future works are
to apply our method to other ILP problems and to evaluate the performance,
and to speed up I/O of MaxSAT instances.

Acknowledgments. This work was supported by KAKENHI(25330085).

References

1.

Kondo, S., Yamamoto, A.: Inductive Logic Programming Using a SAT Solver, The
Special Interest Group Notes of the Japanese Society for Artificial Intelligence, SIG-
FPAI-B104, JSAI, pp.75-80 (2012) (in Japanese)

. Furukawa, K., Ozaki, T., Ueno, K.: Inductive logic programming, Kyoritsu publish-

ing, Tokyo (2001) (in Japanese)
Srinivasan, A.: The Aleph Manual, http://www.comlab.ox.ac.uk/oucl/research/
areas/machlearn/Aleph/ (1999)

. Muggleton, S.: Inverse Entailment and Progol: New Generation Computing Journal,

Vol. 13, pp. 245-286, (1995)

. Chu, M., Felip, M.: MaxSAT, Handbook of Satisfiability, pp.613-631 (2009)
. UCI Machine Learning Repository, http://archive.ics.uci.edu/ml/
. Koshimura, M., Zhang, T., Fujita, H., Hasegawa, R.: QMaxSAT: A Partial Max-

SAT Solver, JSAT, Vol.8 pp. 95-100 (2012)

. Yet Another Prolog, http://www.dcc.fc.up.pt/~vsc/Yap/

