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Abstract. Support Vector Machines (SVM) and kernel techniques have
been proven effective on various application domains using attribute-
value representation. A number of works have been done to apply SVM
on First-Order Logic (FOL) data as well as using SVM with Inductive
Logic Programming (ILP). In this paper, we propose kernel functions
for FOL data developed from the four-layer distance metric. Since our
proposed kernels are not positive definite, we apply the shift spectrum
transformation to ensure that the kernel matrices are positive semidefi-
nite before use them in the SVM optimization algorithm. The proposed
kernels yields higher accuracies than the baseline ILP system on Mutage-
nesis and Alzheimer dataset. They significantly outperform the existing
kernel functions on the Alzheimer dataset. On the Mutagenesis dataset,
our kernel functions performs not significantly different from the best
accuracy.

1 Introduction

The real-world data cannot always be represented numerically. Many types of
data are represented First-Order Logic (FOL) representation especially the struc-
tured data with relationships among objects. Various techniques have been in-
vented to learn from this type of data. Inductive Logic Programming (ILP) is
among those techniques. Support Vector Machines (SVM) have been used in the
ILP community. The basic idea of SVM is to construct a maximal margin lin-
ear classifier. Kernel functions are necessary for SVM to deal with non-linearly
separable datasets. These functions embed datasets to Hilbert spaces. To ensure
the maximal margin classifiers, the kernel functions must be positive definite, or
equivalently the kernal matrices must be positive semidefinite.

In Section 2, we describe the format of FOL datasets that are appropriate
for our proposed kernel functions. Section 3 provides the definition of the four-
layer distance metric. Section 4 shows how to construct four-layer distance based
kernel functions. The results of the experiments are shown in Section 5. Finally,
we conclude our work in Section 6.

2 Setting

We are working under the assumption that elements in a dataset is defined as
follow:
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Definition 1. A (first-order logic) dataset C is a set of elements of the form

IDr = r(ID, x1, ..., xn),

where r is a predicate symbol. The first entry of an atom will be called rank 0,
the (i+ 1)th entry will be call rank i of an atom. An argument in the rank 0 is
called ID. An element of C is called an atom.

Definition 2. An object X is an FOL object if its entire properties and identi-
ties are can be expressed by atoms in a (first-order logic) dataset C. A set of all
atoms with ID = X is called the property set of X.

A dataset C is then a union of property sets of FOL objects. A single-level
structure object is a FOL object whose ID argument will not appear in rank 0
of other atoms. A multi-level structure object is a FOL object whose arguments
in all entries of any atoms can be ID of other atoms.

3 The Four-Layer Distance Metric

Definition 3. Suppose X and Y are two FOL objects whose properties are rep-
resented in a dataset C where both X and Y are main IDs. The four layer distance
between X and Y is defined as follow:

Layer 1: Distance function of arguments with respect to a predicate
symbol r and rank i: Suppose Xr = r(X,x1, x2, · · · , xn) and Y r = r(Y, y1, y2, · · · , yn)
are two atoms in C with the same predicate symbol r. The distance between
xi and yi is defined as

∆r,i(xi, yi) =


0 if xi = yi,
1 if xi 6= yi, and xi /∈ R or yi /∈ R,
|xi − yi|
max(r, i) if xi 6= yi and xi, yi ∈ R.

where max(r, i) is the maximum difference of all pairs of arguments in the
rank i of atoms with the predicate symbol r, ranging over C.

Layer 2: Distance function of atoms with respect to a predicate symbol
r: Suppose Xr = r(X,x1, x2, · · · , xn) and Y r = r(Y, y1, y2, · · · , yn) are two
atoms in C with the same predicate symbol r. The distance function of two
atoms with the same predicate symbol r is defined as

dr(Xr, Y r) =

√√√√√ n∑
i=1

(δr,i(xi, yi))2

n

where,

δr,i(xi, yi) =

0 if xi = yi,
∆r,i(xi, yi) if at most one of xi, yi is an ID,
D(xi, yi) if both xi, yi are ID’s.
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Note that in the case where xi and yi are not equal and are both IDs of
other atoms, then δr,i(xi, yi) is set to D(xi, yi), ranging over Ω′, a set of
all predicate symbols of atoms whose IDs are arguments in rank i of any
atoms with the predicate symbol r and is defined recursively until xi, yi are
single-level structure objects.

Layer 3: Distance between two FOL objects with respect to a predicate
symbol r: For a predicate symbol r, suppose there are p atoms with main
ID = X and q atoms with main ID = Y , then the r-distance between an
object X and an object Y is

Dr(X,Y ) =


max{ pmax

k=1

q

min
j=1

dr(Xrk , Y rj ), qmax
j=1

p

min
k=1

dr(Xrk , Y rj )} if p, q 6= 0
1 if p 6= 0, q = 0,

or p = 0, q 6= 0
0 if p = q = 0

Layer 4: The Four-layer Distance between two FOL objects: For two
objects main ID = X and main ID = Y whose properties are expressed as
atoms in C. The distance between X and Y is defined as

D(X,Y ) =

√√√√√
∑
r∈Ω

(Dr(X,Y ))2

|Ω|

where Ω is the set of predicate symbols of atoms that contain main ID in
C. In the calculation of D(xi, yi), if at some level, D(xi, yi) is a function of
itself, then D(xi, yi) is obtained by solving that equation. This equation where
D(xi, yi) is a function of itself is call the distance equation of D(xi, yi).

Note that the four-layer distance function in this section is defined recursively.
This will allow our four-layer distance function to support multi-level structure
datasets.

Theorem 1. The four-layer distance function is a metric.

4 Four-Layer Distance Based Kernels

A kernel k : C × C → R is a real-valued function that takes a cartesian product
of elements in C and returns a real number. If k is positive definite, then there
exist a map Φ that isometically embeds C into a Hilbert space H such that,

〈Φ(X), Φ(Y )〉 = k(X,Y ), (1)

which is a dot product of Φ(X) and Φ(Y ) in H. Because of the equation 1, the
computation of dots product in H can be done on C without needing to know
what Φ(X) and Φ(Y ) are. In SVM, the positive definite property of k is required
to secure the maximal margin in the Hilbert space H.

A distance based kernel is a kernel that are created based on a distance metric
d such that d(X,Y ) = ||Φ(X)− Φ(Y )||H.
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Let D(X,Y ) be a four-layer distance metric defined in Definition 3. We define
a kernel function as follow:

k(X,Y ) = kO(X,Y ) = 1
2
(
D(X,Y )2 −D(X,O)2 −D(Y,O)2) ,

where O is a fixed object in a dataset C.
Notice that,

||Φ(X)− Φ(Y )||2H = 〈Φ(X)− Φ(Y )〉〈Φ(X)− Φ(Y )〉
= 〈Φ(X), Φ(X)〉 − 2〈Φ(X), Φ(Y )〉+ 〈Φ(Y ), Φ(Y )〉

=
(

1
2
(
D(X,X)2 −D(X,O)2 −D(X,O)2))

−2
(

1
2
(
D(X,Y )2 −D(X,O)2 −D(Y,O)2))(

1
2
(
D(Y, Y )2 −D(Y,O)2 −D(Y,O)2))

= D(X,Y )2

We construct four different types of kernel function based on the four-layer
distance metric (4L-kernels) [2]:

1. A four-layer distance based simple linear kernel:

klin4L (X,Y ) = 1
2
(
D(X,Y )2 −D(X,O)2 −D(Y,O)2) ,

where O is a fixed object in a dataset C.
2. A four-layer distance based negative-distance kernel:

knd4L(X,Y ) = −
(
D(X,Y )2) .

3. A four-layer distance based polynomial kernel:

kpol4L (X,Y ) =
(
1 + γ

(
D(X,Y )2 −D(X,O)2 −D(Y,O)2))p ,

where γ ∈ R+ and p ∈ N.
4. A four-layer distance based Gaussian kernel:

kgs4L(X,Y ) = e−γD(X,Y )2
,

where γ ∈ R+.

The kernel k is be positive definite if and only if the Gram matrix (kernel
matrix) K = [k(Xi, Xj)] where i, j = 1, . . . , |C| must be positive semidefinte,
i.e., eigenvalues of K are non-negative.

The 4L-kernels are, by themselves, not positive definite function because the
4L distance metric is not conditionally positive definite on some datasets. In the
indefinite cases, we apply the shift spectrum transformation [6] on the indefi-
nite Gram matrix to obtain the positive semidefinite one. The shift spectrum
transformation is as follow:
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K̃ = UΛ̃UT = U(Λ+ ηI)UT = K + ηI

Wu et al. [6], have shown that if η is greater than |λN |, where λ ≥ λN
for all eigenvalues λ of K, then K̃ is positive semidefinite. The shift spectrum
transformation preserve semantic of the Gram matrix since it does not change
the off-diagonal entries. They also showed that minimizing the dual formation
after shift is equivalent to minimizing both the dual formation before shift and
2-norm of the multiplier vector.

5 Experiments and Discussions

We test our 4L-kernels on real-world ILP datasets, i.e. Mutagenesis dataset [5],
and the Alzheimer dataset [3] with 4 different properties. The experiments are
conducted by training Support Vector Machines (SVM) using 10-fold cross val-
idation method. In each dataset, if the Gram matrix is indefinite, we apply the
shift spectrum transformation with η = |λN |, where λN is the minimum eigen-
value as defined in the previous section. From the preliminary test, we found that
the accuracy was achieved with γ = 1 in the Gaussian kernel and γ = 1, p = 5
for polynomial kernel. Thus, we use γ = 1, p = 5 to conduct the experiment.

We compare our results (klin4L , knd4L, k
pol
4L , k

gs
4L) with 4 types of kernels based on

RB distance metric [4] (klinRB , kndRB , k
pol
RB , k

gs
RB), and the kernel for structured data

[1] (kDK). The results from Aleph1, one of the most widely used ILP systems, is
used as the baseline. In RB distance based kernels, we use the same parameter
γ = 1, p = 5 in Gaussian and polynomial kernels as suggested by a preliminary
experiment. The results of the experiment are shown in Table 1. Since kDK
has been proven to be a positive definite kernel, we do not apply the spectrum
transformation on the kernel matrices from this kernel.

The results show that SVM using our proposed 4L-kernels perform better
than Aleph, the baseline technique for ILP. Our kernel kpol4L yields the best ac-
curacy on all four properties of the Alzheimer dataset. The accuracies are sig-
nificantly different from a number of methods. The kernel kgsRB yields the best
accuracy on the Mutagenesis dataset. However kgsRB is not significantly differ-
ence from our kernel kpol4L in this dataset. The results also show that all types of
4L-kernels perform generally better than the other techniques.

Kernel matrices from our proposed 4L-kernels on the amine property of the
Alzheimer dataset are positive semidefinite. They perform significantly better
than the other indefinite kernels.

6 Conclusion

We propose the kernel functions of FOL data based on the four-layer distance
metric. Since the kernel functions are not positive definite on some datasets, we
apply the shift spectrum transformation technique to make the kernel matrices
be positive semidefinite. We evaluate the proposed kernel functions by using
1 http://www.cs.ox.ac.uk/activities/machlearn/Aleph/aleph_toc.html
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Table 1. Prediction accuracies on real-world datasets using 10-fold cross validation
method (figures in boldface font indicate the best accuracy in each dataset, the symbol
† indicates the positive semidefinite kernel matrix, and the accuracies with the symbol
∗ are significantly different from the best accuracy in their dataset with p < 0.01.

Method Muta Alz amine Alz toxic Alz acetyl Alz memory
Aleph 73.4 ± 11.8 70.2 ± 7.3∗ 90.9 ± 3.5∗ 73.5 ± 4.3∗ 69.3 ± 3.9∗

klin
4L 70.2 ± 12.4 92.1 ± 4.5∗ 94.4 ± 2.1∗ 93.0 ± 1.6∗ 87.4 ± 5.6

knd
4L 72.8 ± 8.1 93.3 ± 5.3∗ 98.0 ± 1.6 93.0 ± 2.9∗ 88.5 ± 3.8

kpol
4L 79.7 ± 8.1 96.4 ± 2.7† 98.2 ± 1.1 95.6 ± 2.0 89.6 ± 3.9

kgs
4L 74.0 ± 9.3 93.0 ± 4.6†∗ 95.5 ± 2.2∗ 92.8 ± 2.0∗ 88.3 ± 4.8

klin
RB 82.4 ± 6.3 72.6 ± 4.3∗ 62.7 ± 4.4∗ 62.7 ± 3.0∗ 52.5 ± 8.4∗

knd
RB 81.9 ± 8.3 70.8 ± 5.7∗ 59.9 ± 5.3∗ 62.0 ± 3.8∗ 52.2 ± 8.3∗

kpol
RB 77.6 ± 5.2 72.5 ± 4.8∗ 73.3 ± 5.1∗ 69.8 ± 4.1∗ 59.5 ± 3.6∗

kgs
RB 83.6 ± 9.7 85.1 ± 3.8∗ 88.5 ± 2.6∗ 81.3 ± 3.0∗ 74.3 ± 3.0∗

kDK 82.0 ± 10.8 93.2 ± 3.5∗ 96.4 ± 1.8∗ 94.6 ± 2.3 88.8 ± 3.7

them to construct SVM for real-world datasets. The experimental results show
that SVM with the proposed kernel functions provide higher accuracy than the
baseline ILP system, and generally perform better than existing kernel functions.
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