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Abstract. Data Transformation is an important part of data curation, which involves the maintenance
of research data on a long-term basis with the aim of allowing its re-use. This activity, wide-spread in
commercial and academic data analytics projects, is labour intensive, involving the manual construction
and debugging of large numbers of small, special purpose data transformation programs. This paper
investigates learning data transformation programs from examples provided by the user. Though small,
such programs can be relatively complex, involving problem decomposition, repetition and recognition of
context. These features together with the need to learn from a handful of user examples make this a hard
task for standard ILP systems. We use a Meta-Interpretive Learning approach which supports these various
requirements through predicate invention and the learning of recursive programs from small numbers of
examples. In our approach we develop a general technique for applying MetagolDF to both semi-structured
and unstructured data. Our experiments are conducted on tasks involving semi-structured medical patient
data and un-structured ecological text. The results indicate that high levels of predictive accuracy can be
achieved in these tasks from small number of training examples.

1 Introduction

Suppose you are given a large number of patient records in a semi-structured format and are required
to transform them to a given structured format as shown in Fig. 1. In order to avoid manually editing
the transformations, you might decide to write a small program to extract the relevant fields from the
input and produce them in the output. Fig. 1c illustrates the kind of Prolog transformation program
for this task which can be generated automatically from a small number of examples such as those
in Fig. 1a (see Section 5). In this program, predicate invention is used to introduce f1− f2 and the
primitive background predicates find patient id/2, find int/2, and open interval/4 are used to identify
the various fields to be transposed from input to output.

P 001

67 year

lung disease: n/a, Diagnosis: Unknown
80.78

P 003

56

Diagnosis: carcinoma , lung disease: unknown
20.78

P 013

70

Diagnosis: pneumonia

55.9

(a) Input

P 001 67 Unknown

P 003 56 carcinoma

P 013 70 pneumonia

(b) Output

f(A,B):- f2(A,C), f1(C,B).

f2(A,B):- find patient id(A,C) , find int(C,B) .

f1(A,B):- open interval(A,B,[’:’,’ ’],[’́,’n’]).

f1(A,B):- open interval(A,B,[’:’,’ ’],[’,’,’ ’]).

(c) Learned program

Fig. 1: Transformation of medical records from semi-structured format

This paper uses the recently developed Meta-Interpretive Learning (MIL) framework [9, 3, 4]. MIL differs
from most state-of-the-art ILP approaches by supporting predicate invention for problem decomposition
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and the learning of recursive programs. MIL has [10] been shown to be capable of learning a simple
robot strategy for building a stable wall from a small set of initial/final state pairs. The work in
this paper uses the same general approach as that employed in [7] for building string transformation
programs. Here we look at the more general problem of learning data transformation programs.

The paper is arranged as follows. Section 2 describes related work. Section 3 describes the theoretical
framework. Section 4 describes the framework implementation. Section 5 describes experiments in
ecological and medical domains. Finally, Section 6 concludes the paper and details future work.

2 Related work

In [2] the authors compared statistical and relational methods to extract facts from a MEDLINE
corpus. The primary limitation of the statistical approach, they state, is its inability to express the
linguistic structure of the text; by contrast, the relational approach allows these features to be encoded
as background knowledge, as parse trees, specifically. The relational approach used an ILP system
similar to FOIL [11] to learn extraction rules. Similar works include [5], who used the ILP system
Aleph [13] to learn rules to extract relations from a MEDLINE corpus; and [1], who used the ILP
system FOIL to learn rules to extract relations from Nature and New Scientist articles. These works
focused on constructing the appropriate problem representation, including determining the necessary
linguistic features to be included in the background knowledge. In contrast to these approaches, we
use the state-of-the-art ILP system MetagolDF , which supports predicate invention, the learning of
recursive theories, and positive-only learning, none of which is supported by FOIL nor Aleph.

FlashExtract [6] is a framework to extract fields from documents, such as text files and web pages.
In this framework, the user highlights one or two examples of each field in document and FlashExtract
attempts to extract all other instances of such fields, arranging them in a structured format, such as a
table. FlashExtract uses an inductive synthesis algorithm to synthesise the extraction program using a
domain-specific language built upon a pre-specified algebra of few core operators (map, filter, merge,
and pair). In contrast to FlashExtact, our approach allows for the inclusion of background knowledge.

Wu and Knoblock [15] recently describe a Programming-by-Example technique which iteratively
learns data transformation programs by example. While the overall aims of their approach are similar
to ours, their approach does not support automatic problem decomposition using predicate invention.

3 Framework

MIL [9, 10] is a form of ILP based on an adapted Prolog meta-interpreter. Whereas a standard Prolog
meta-interpreter attempts to prove a goal by repeatedly fetching first-order clauses whose heads unify
with a given goal, a MIL learner attempts to prove a set of goals by repeatedly fetching higher-order
metarules (Fig. 2b) whose heads unify with a given goal. The resulting meta-substitutions are saved
in an abduction store, and can be re-used in later proofs. Following the proof of a set of goals, a
hypothesis is formed by applying the meta-substitutions onto their corresponding metarules, allowing
for a form of ILP which supports predicate invention and the learning of recursive theories.

General formal framework In the general framework for data transformation we assumes that the
user provides examples E of how data should be transformed. Each example e ∈ E consists of a pair
〈d1, d2〉 where d1 ∈ D1 and d2 ∈ D2 are input and output data records respectively. Given background
knowledge B, in the form of existing transformations and the user-provided examples E the aim of the
learning is to generate a transformational function τ : D1→ D2 such that B, τ |= E.

4 Implementation

Fig. 2a shows MetagolDF [7], an implementation of the MIL framework, similar in form to a standard
Prolog meta-interpreter. The metarule set (Fig. 2b) is defined separately.
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prove([], P rog, Prog).
prove([Atom|As], P rog1, P rog2) : −
metarule(Name,MetaSub, (Atom :- Body), Order),
Order,
abduce(metasub(Name,MetaSub), P rog1, P rog3),
prove(Body, Prog3, P rog4),
prove(As, Prog4, P rog2).

(a) Prolog code for generalised meta-interpreter

Name Metarule Order
Base P (x, y)← Q(x, y) P � Q
Chain P (x, y)← Q(x, z), R(z, y) P � Q,P � R
Curry P (x, y)← Q(x, y, c1, c2) P � Q
TailRec P (x, y)← Q(x, z), P (z, y) P � Q, x � z � y

(b) Metarules with associated ordering constraints, where �
is a pre-defined ordering over symbols in the signature. The
letters P , Q, and R denote existentially quantified higher-
order variables; x, y, and z denote universally quantified first-
order variables; and c1 and c2 denote existentially quantified
first-order variables.

Fig. 2: MetagolDF meta-interpreter (a) and metarules (b)

4.1 Transformation language

The transformation framework1 includes three predicates: find sublist/3, closed interval/4, and open interval/4.
These predicates transform an input state to an output state. The find sublist/3 predicate finds a
complete sublist in an input and writes it to the output. The closed interval/4 and open interval/4
predicates find a sublist denoted by start and end delimiters, and write it to the output. For example,
if the input = [i,n,d,u,c,t,i,o,n], start delimiter = [n,d], and end delimiter = [t,i], then the predi-
cate open interval/4 predicate writes [u,c] to the output, and the predicate closed interval/4 writes
[n,d,u,c,t,i] to the output. The delimiters are the set of all sublists of length k in an input. The value of
k is pre-specified as part of the background knowledge, and, as the experiments demonstrate in Section
5, affects the predictive accuracy of the learner.

5 Experiments

This section details experiments in learning data transformation programs. We test the following null
hypothesis: MetagolDF cannot learn data transformation programs with higher than default predictive
accuracies. To test this hypothesis, we apply our framework in two domains: ecological scholarly papers,
and medical patient records. In all experiments, we use the Chain and Curry metarules (Fig. 2b).

5.1 Ecological scholarly papers

In this experiment, the aim is to learn programs to extract relations from natural language taken from
ecological scholarly papers.

Materials The dataset contains 32 positive real-world examples taken from ecological scholarly papers
(adopted from [14]) of a natural language sentence paired with a list of relations to be extracted. Fig. 3
shows two example pairings, and the partial background knowledge used in the experiment, where
natural language sentences are represented as lists of terms. We provide a complete set of known
species, but we do not provide predation terms in the background knowledge, so Metagol must use
the general purpose background predicates, described in Section 4, to learn a solution. To generate
negative testing examples, we create a frequency distribution over input lengths from the training
examples and a frequency distribution over words and punctuation in the training examples. To create
a negative testing example input, we randomly select a length n from the length distribution and then
randomly select with replacement n words or punctuation characters. To create the negative testing
output, we randomly select without replacement three words from the input.

1 Full code and experimental data are available at http://ilp.doc.ic.ac.uk/datatransformation
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Harpalus rufipes eats large prey such as Lepidoptera .

Bembidion lampros : In cereals the main food was Collembola .

(a) Input examples

Harpalus rufipes eats Lepidoptera

Bembidion lampros food Collembola

(b) Output examples

find species(A,B):-
known species(Species),
find sublist(A,B,Species).

known species([L,o,r,i,c,e,r,a, ,p,i,l,i,c,o,r,n,i,s]).
known species([H,a,r,p,a,l,u,s, ,r,u,f,i,p,e,s]).

(c) Partial background knowledge for the ecological experi-
ment

Fig. 3: Ecological input (a) and output (b) examples with the background knowledge (c)

Methods For each m in the interval [1,5], we randomly select without replacement m positive training
examples, 20 positive testing examples, and 20 negative testing examples. We learn using the positive
training examples only, but we test with both positive and negative examples, and thus the default
predictive accuracy is 50%. We average predictive accuracies and learning times over 20 trials. We
repeat the experiment for delimiter sizes 1, 2, and 3.

Results Fig. 4 shows that predictive accuracies improve with an increasing number of training examples,
with over 80% predictive accuracy from two examples. In all cases, the predictive accuracies of learned
solutions are greater than the default accuracy, and thus the null hypothesis is rejected. The results
show that in this scenario there is no significant difference in predictive accuracy between delimiter
sizes 1 and 2. For a delimiter size of 3, however, the predictive accuracy tails off because Metagol could
not learn sufficiently discriminative delimiters under the size constraints. Fig. 4c show an example
learned solution.
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f(A,B):- f3(A,C), find species(C,B).
f3(A,B):- find species(A,C), f2(C,B).
f2(A,B):- closed interval(A,B,[f,o],[o,d]).
f3(A,B):- find species(A,C), f1(C,B).
f1(A,B):- closed interval(A,B,[e,a],[t,s]).

(c) Learned program

Fig. 4: Ecological learning results when varying number of training examples

5.2 Patient medical records

In this experiment, the aim is to learn programs to extract values from patient medical records.

Materials The dataset contains 16 positive patient medical records, modelled on real-world examples2,
paired with a list of values to be extracted. Figs. 1a and 1b show simplified input/output example

2 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE8581
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pairings. The experimental dataset, however, contains one additional input and output value, which is
a floating integer value. We provide the following background predicates: find int/2, find float/2, and
find patient id/2. We do not, however, provide a predicate to identify the diagnosis field, so Metagol
must use the general purpose background predicates, described in Section 4, to learn a solution. To
generate negative testing examples, we use an almost identical approach to the ecological experiment,
and details are omitted for brevity.

Methods The methods are almost identical to ecological experiment, but we use 40 testing examples,
half positive and half negative.

Results Fig. 5 shows that predictive accuracies improve with an increasing number of training examples,
with over 80% predictive accuracy from a single example. In all cases, the predictive accuracies of
learned solutions are greater than the default accuracy, and thus the null hypothesis is rejected. The
results suggest a difference in predictive accuracy between delimiter sizes 1, 2, and 3, with a delimiter
size of two achieving the highest predictive accuracy. Fig. 5c shows an example solution for a delimiter
size of 2.
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f(A,B):- f2(A,C), f2(C,B).
f2(A,B):- find patient id(A,C), find int(C,B).
f2(A,B):- f1(A,C), find float(C,B).
f1(A,B):- open interval(A,B,[’:’,’ ’],[’́,’n’]).
f1(A,B):- open interval(A,B,[’:’,’ ’],[’,’,’ ’]).

(c) Learned program

Fig. 5: Medical record learning results when varying number of training examples

6 Conclusion and further work

We have investigated learning programs which transform data from one format to another. A general
framework for the problem is presented and experiments conducted on ecological and medical data sets
indicate that MIL is capable of generating accurate data transformation programs from small numbers
of user-provided examples.

Further work This paper provides an initial investigation into an important new group of ILP
applications relevant to real-world big data problems. Further work remains to achieve this potential.
In particular, in an extended paper we hope to perform comparisons with alternative ILP and other
machine learning techniques on this problem.

Although recursion and predicate invention appear important for data transformation problems, it
is unclear how critical these are in either of the data sets studied. We would therefore like to study a
broader set of datasets to understand this issue better.

Several issues need to be studied further in scaling-up the work reported. To begin with, although
training data required will be small, owing to the requirements of user-provided annotation, test data
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will typically consist of large numbers of instances. Running Prolog hypotheses on such data will be
time-consuming, and we would like to investigate generating hypotheses in a scripting language, such
as Python.

For data transformation problems such as the ecological data set we would also like to investigate
the value of large scale background knowledge, which might provide deeper natural language analysis
based on dictionaries, tokenisation, part-of-speech tagging, and specialised ontologies.

We would also like to investigate Probabilistic ILP approaches [12], such as [8], which have the
potential to not only provide probabilistic preferences over hypothesised programs, but also the potential
of dealing with issues such as noise which are ubiquitous within real-world data. In the context of
free-text data these approaches might also be integrated with finding highest probability parses.
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