
Typed meta-interpretive learning
for proof strategies

Colin Farquhar1, Gudmund Grov1, Andrew Cropper2,
Stephen Muggleton2, and Alan Bundy3

1 Heriot-Watt University, Edinburgh, UK, {cif30,G.Grov}@hw.ac.uk
2 Imperial College, London, UK {a.cropper13,s.muggleton}@imperial.ac.uk

3 University of Edinburgh, UK a.bundy@ed.ac.uk

Abstract. Formal verification is increasingly used in industry. A pop-
ular technique is interactive theorem proving, used for instance by Intel
in HOL light. The ability to learn and re-apply proof strategies from a
small set of proofs would significantly increase the productivity of these
systems, and make them more cost-effective to use. Previous learning at-
tempts have had limited success, which we believe is a result of missing
key goal properties in the strategies. Capturing such properties will re-
quire predicate invention, and the only technique we are familiar which
supports this is meta-interpretive learning (MIL). We show that MIL
is applicable to this problem, but that without type information it of-
fers limited improvements in quality over previous work. We then extend
MIL with types and give preliminary results indicating that this exten-
sion learns better-quality strategies with suitable goal properties.

1 Introduction
The expressiveness of (higher order) interactive theorem provers have made them
a popular choice for formalised mathematics and software verification4. However,
the expressiveness comes at the expense of poor proof automation: users often
have to manually provide step-by-step guidance of the proofs, where each step
applies a proof tactic that splits a goal into smaller and simpler sub-goals.

A commonly observed phenomenon is that proofs often group into families,
such that, once the expert user has discharged one proof, the same pattern can
be applied to the rest [2]. For a common user, the remaining proofs have to be
manually guided as well. If one could learn and reapply proof strategies from
one (or a few) example(s) then this could significantly increase proof automation,
making the overall approach more cost-effective - a key bottleneck for industrial
application of software verification - and provide support for more elegant auto-
mated proofs.

Previous attempts to learn proof strategies [4,6] focused on tactic composi-
tion, which does not capture conditions for branching, ie. when a strategy should
be applied. This will either result in a large, possibly non-terminating, search
space, or a hardcoding of heuristics which may rule out some proofs. This de-
ficiency was part of our motivation in developing the PSGraph language [5],
which describes these conditions and includes information about the tactics and
(sub-)goals. This is achieved by representing proof strategies as graphs, where

4 See e.g. the AFP [afp.sourceforge.net] and L4.verified [sel4.systems].

http://afp.sourceforge.net/
http://sel4.systems/

proof tactics are represented by nodes and goal information by predicates which
label the wires.

Meta-Interpretive Learning (MIL) [12] was designed to learn from a small set
of examples. It supports predicate invention, which is required to learn definitions
of the goal predicates, ie. branching conditions, due to their rich and recursive
nature. In this paper, we first show (C1) that MIL is capable of learning proof
strategies for the PSGraph language. As we are working with very rich data, we
show that the proof strategies MIL extracts have a high branching factor giving
a large search space. We therefore say they are highly non-deterministic, where
a deterministic strategy has a single branch. Non-determinism is undesirable as
the search space becomes large and the strategies hard to maintain. We claim
(C2) that nondeterminism can be drastically reduced by introducing typing into
MIL and validate our main claim (C3) that “typed MIL learns more deterministic
proof strategies than (untyped) MIL.”

2 Related work

Machine learning has been very successful within automated theorem proving
where it has been used to select relevant hypothesis and has considerably in-
creased proof automation (see e.g. [7]). This problem is orthogonal to ours, as
our aim is to automate proofs that require additional proof guidance which, as
far as we know, have not been tackled by [7]. [8] uses machine learning to provide
hints for the user, but does not generalise proofs into strategies.

The most relevant works that attempt to learn proof strategies are the
LearnOmega system [6] and Duncan’s PhD thesis [4]. In both cases, a regular ex-
pression language is used to represent the proof strategies. This language enables
generalisations through repetition (Kleene star) and choice. Duncan uses a com-
bination of genetic algorithms and statistical methods while the LearnOmega
system develops its own machine learning algorithm. The drawback of these ap-
proaches are that they are not able to learn which branch to choose and when
to stop repeating. [6] supports, but does not learn, conditions on the goals.

Progol [10] uses mode declarations to indicate the types of variables allowed
within atoms in hypothesised clauses. Dependent MIL [9] takes a layered ap-
proach to learning, where each layer learns predicates used at the higher layers.

3 Framework

MIL [11] is an ILP technique aimed at supporting learning of recursive defini-
tions. A powerful and novel aspect of MIL is that when learning a predicate def-
inition it automatically introduces sub-definitions, allowing decomposition into
a hierarchy of reuseable parts. MIL is based on an adapted version of a Prolog
meta-interpreter. Normally such a meta-interpreter derives a proof by repeat-
edly fetching first-order Prolog clauses whose heads unify with a given goal. By
contrast, a meta-interpretive learner additionally fetches higher-order metarules
whose heads unify with the goal, and saves the resulting instantiated metarules
to form a program. Our work uses the MetagolDF implementation [9] of MIL.
First, we extend this framework with simple types:

lemma (A −→ B) −→ (B −→ C) −→ A −→ C
apply (rule impI)
apply (rule impI)
apply (rule impI)
apply (erule impE)
apply assumption
apply (erule impE)
apply assumption
apply assumption
done

Fig. 1. Left to right: Proof tree, Isabelle proof script; and strategy as PSGraph.

Definition 1 (Typed Meta-Interpretive Learning). In typed MIL, each
predicate and argument in the background, examples and meta-rules is tagged
with a constant ti denoting its type. To illustrate, typing P (X,Y) becomes:

P : t1(X : t2, Y : t3).

To unify two predicates their types must also unify. Types for predicates, e.g.
P (X : t2, Y : t3), or arguments, e.g. P : t1(X,Y), may be omitted if they have a
single type. We call these argument typed MIL and predicate typed MIL.

Our work will use predicate typed MIL. Note that in order to work the MetagolDF

framework, the predicate type is represented as an additional argument: e.g.
P : t1(X,Y) is internally represented as P (t1, X, Y). The argument types are
not relevant to this work.

In our experiments we apply (typed) MIL to proofs from the state-of-the-art
Isabelle theorem prover [13]. Figure 1 (left) illustrates a proof tree acting as
an example to learn from. This tree has been generated from the proof script
(middle) using the ProofProcess framework [14]. In the proof script, each tactic
is preceded by the apply keyword and works by splitting a single goal into a
list of new sub-goals. Note that each tactic may introduce branching, and the
script/tree only shows one of the branches – back-tracking is required to try
other branches. Our goal is to generalise this proof into a proof strategy in
PSGraph that can be applied to “similar proofs”, as illustrated on the right
of the figure. Here, repeated application has been generalised to a loop, where
the ‘wire predicates’ capture the cases where it should loop and where the loop
should terminate. Also note that a wire can hold multiple goals, and that the
graph is open: a wire without a source represents an input, while a wire without
a destination represents an output. A proof is created by sending a goal down
an input edge. This will apply the tactic at the destination to it, and send the
new sub-goals to its output wires. Crucially, the wire predicate has to succeed
for a given goal, and if multiple output wires succeed then this will introduce
branching to the search space. For more details see [5].

We have fully automated the translation of the Isabelle proof scripts into
Prolog clauses in order to apply Metagol to it. This encoding introduces four
distinct types: psgraph for the PSGraph we are trying to learn; tactic for the

underlying tactics of the theorem prover; wpred for the wire predicates and gdata
for data associated with the goals. The proof tree structure is handled by a binary
predicate for each tactic application, with one predicate for each branching. E.g.
the step that turns g3 into g4 and g5 is represented by the two clauses:

erule impE : tactic(g3, g4). erule impE : tactic(g3, g5).

A (sub-)goal contains a set of hypotheses and a goal, e.g. g4 is A, (B −→ C) ` A.
These terms are projected from the goals by hyp:gdata and concl:gdata. To
illustrate, the edge predicate used by the assumption tactic requires the same
term to be in the hypothesis and conclusion:

has asm : wpred(G)← hyp:gdata(G,T), concl:gdata(G,T).

Isabelle internally stores terms as typed lambda expressions [13]. We have
simplified their encoding by omitting these lambda expressions (as they are so
far not used in our examples): a term is thus either a constant const , encoded
as c(const), or an application of two terms t1 and t2, written app(t1, t2). The
goal information for g4 thus becomes:

concl : gdata(g4, c(A)).
hyp : gdata(g4, c(A)). hyp : gdata(g4, app(app(c(−→), c(B)), c(C))).

In addition, we provide operators left:gdata and right:gdata to project the left
and right sub-terms of an application and const:data to check if a term is a
constant. These are provided to the Metagol, in addition to some additional in-
formation discussed in the next section. To learn a PSGraph we use the following
typed metarules:

P : psgraph(X,Y)← Q : wpred(X), R : tactic(X,Y). (1)

P : psgraph(X,Y)← Q : psgraph(X,Z), R : psgraph(Z, Y). (2)

P : psgraph(X,Y)← Q : psgraph(X,Z), P : psgraph(Z, Y). (3)

(1) lifts a tactic to PSGraph with a single node (R) and an input wire with
a predicate (Q); (2) sequentially composes two PSGraphs with an edge (Z)
between them5; (3) is used to handle recursion (feedback loops in the graphs).
Note that in our case, the metarules can be seen as giving the semantics for
the psgraph type and to ensure that a valid PSGraph is learnt, as the type
forces the learner to only use the above metarules since the positive examples
will be of the same type. For the example of Figure 1, the positive examples are
each branch (as this is an AND tree), i.e. to learn S, we give S : psgraph(g0, g4),
S : psgraph(g0, g6) and S : psgraph(g0, g7). Finally, note that by using types, we
can have an arbitrary rich set of metarules for wpred to learn e.g. Q : wpred(X).

4 Experiments
We have experimented with untyped and typed MIL to learn proof strategies
from a collection of 15 proofs in propositional logic6. In addition to the metarules

5 This wire is labelled by the label of the input wire of R.
6 The examples are taken from: isabelle.in.tum.de/exercises

http://isabelle.in.tum.de/exercises

and examples discussed in §3, tactic definitions are provided as background in-
formation. The experiments were run using YAP on Ubuntu using a 3.10 GHz
Intel i5-2400 CPU with 4GB RAM. The experiments were repeated with dif-
ferent time limits (1, 2, 4 and 8 seconds), with figures 4 and 5 in Appendix A
showing mean and individual results respectively 7.

Fig. 2. Mean branching for strategies learned us-
ing untyped (UT) and typed (T) MIL

For each example we con-
sider the branching factor (σ)
of the learned strategy. This in-
dicates the number of possible
proof trees which could be con-
structed by applying the strat-
egy to a goal, including cases
where the proof would fail. The
graph in Figure 2 shows the av-
erage value of σ for both un-
typed and typed strategies com-
pared to an optimum value.
This optimum line represents
Metagol learning a strategy from each example which has only one branch and
thus one proof tree can be formed for each. Using untyped MIL σ > 1 initially,
indicating more than one path on average, and σ increases with time as more
complex solutions are included. With typed MIL σ = 1 initially, remaining con-
stant as time increases. These results show that as time increases untyped MIL
diverges from the optimum σ, ie. generates less efficient strategies. Conversely,
typed MIL produces strategies which are optimally efficient.

The wire predicates are provided as background information as initial experi-
ments in inventing them had limited success. Untyped MIL ignores the predicate
as it is not needed to find the simplest possible solution. This is overcome in typed
MIL, as we can enforce wire predicates with the metarules. However, inventing
a wpred in terms of gdata has so far failed. Resolving this is ongoing work.

5 Conclusion and further work

We have been able to learn proof strategies from 86% of the examples and have
therefore validated our claim (C1) that the MIL framework is capable of learning
proof strategies. However, in terms of branching, untyped MIL seems to offer no
improvements over previous work [4,6] as it ignores learning the required goal
properties. We have introduced types in the MIL framework by adding an ad-
ditional constant argument to the predicate (claim C2). The results also show
that typed MIL learns goal properties and reduces branching, although we were
only able to learn strategies from 47% of the examples. Claim (C3) that typed
MIL reduces non-determinism is distinct from success rate, however, and so is
validated. The introduction of types means a larger number of clauses to repre-
sent larger strategies, which drastically increases the execution time for Metagol
and is the reason for failure in most cases. This problem must be addressed if

7 Code with all experiments available at: www.macs.hw.ac.uk/ cif30/ilp15.zip.

http://www.macs.hw.ac.uk/~cif30/ilp15.zip

the success rate of typed MIL is to increase, particularly as we move on to look
at learning more complex strategies. We have started with examples from group
theory, including those used by [6]8, and to see if we can learn the rippling proof
strategy [1], which will require inventing very complex wire predicates.

We further plan to compare the generality of the strategies: our experiments
suggest that this will require learning from multiple examples. However Metagol
timed out for all examples we attempted. We may also need negative exam-
ples, which can be automatically extracted from failed branches when executing
strategies. We would also like to show the advantages of typed MIL for other
domains: the approach we have taken should be applicable for most cases where
labelled graphs are learnt, while we have started experimenting on extending pre-
vious work on learning robot strategies [3] with argument types. Longer term,
we plan to study ‘type invention’ and support for ‘higher order types’.

Acknowledgments. This work has been supported by EPSRC grant EP/J001058/1,

and the first author is supported by a James Watt scholarship. The fourth author ac-

knowledges support from his Royal Academy of Engineering/Syngenta Research Chair.

References

1. A. Bundy, D. Basin, D. Hutter, and A. Ireland. Rippling: Meta-level Guidance for
Mathematical Reasoning. Cambridge University Press, 2005.

2. A. Bundy, G. Grov, and C. B. Jones. Learning from experts to aid the automation
of proof search. In AVoCS’09, CSR-2-2009, pages 229–232. Swansea Uni., 2009.

3. A. Cropper and S. Muggleton. Learning efficient logical robot strategies involving
composable objects. In IJCAI, 2015. To appear.

4. H. Duncan. The use of Data-Mining for the Automatic Formation of Tactics. PhD
thesis, University of Edinburgh, 2002.

5. G. Grov, A. Kissinger, and Y. Lin. A graphical language for proof strategies. In
LPAR, volume 8312 of LNCS, pages 324–339. Springer, 2013.

6. M. Jamnik, M. Kerber, M. Pollet, and C. Benzmüller. Automatic learning of proof
methods in proof planning. Logic Journal of IGPL, 11(6):647–673, 2003.

7. C. Kaliszyk and J. Urban. Learning-assisted automated reasoning with flyspeck.
JAR, 53(2):173–213, 2014.

8. E. Komendantskaya, J. Heras, and G. Grov. Machine learning in proof general:
Interfacing interfaces. In UITP 2012, pages 15–41, 2013.

9. D. Lin, E. Dechter, K. Ellis, J. Tenenbaum, and S. Muggleton. Bias reformulation
for one-shot function induction. In ECAI, pages 525–530, 2014.

10. S. Muggleton. Inverse entailment and Progol. New Generation Computing, 13:245–
286, 1995.

11. S. Muggleton, D. Lin, N. Pahlavi, and A. Tamaddoni-Nezhad. Meta-interpretive
learning: application to grammatical inference. Machine Learning, 94:25–49, 2014.

12. S. Muggleton, D. Lin, and A. Tamaddoni-Nezhad. Meta-interpretive learning of
higher-order dyadic datalog: Predicate invention revisited. Machine Learning, 2015.
Published online: DOI 10.1007/s10994-014-5471-y.

13. L. C. Paulson. The foundation of a generic theorem prover. JAR, 5(3):363–397,
1989.

14. A. Velykis. Capturing Proof Process. PhD thesis, Newcastle University, 2015.

8 Available from: [bit.ly/1IEWu3H]

http://bit.ly/1IEWu3H

Appendix A: Learning Results

A : A −→ B −→ A
B : A ∨B −→ B ∨A
C : A −→ ¬¬A
D : (A ∨A) = (A ∧A)
E : A −→ A
F : A ∨ ¬A
G : ¬¬A −→ A
H : A ∧B −→ B ∧A
I : (A −→ B −→ C) −→ (A −→ B) −→ A −→ C
J : ((A −→ B) −→ A) −→ A
K : (A ∧B) −→ (A ∨B)
L : (A −→ B) −→ (B −→ C) −→ A −→ C
M : (¬A −→ B) −→ (¬B −→ A)
N : (¬(A ∧B)) = (¬A ∨ ¬B)
O : ((A ∨B) ∨ C) −→ A ∨ (B ∨ C)

Fig. 3. Propositional logic lemmas used in selecting examples. The proofs of these
lemmas constructed in the Isabelle theorem prover were used to generate background
information and examples in prolog for Metagol to learn f.rom

success mean nodes mean clauses mean br mean evals

Untyped 13 4 3 9 1

Typed 7 4 4 1 2

Fig. 4. Averaged learning results for untyped and typed MIL across all solutions found,
showing mean number of nodes in the strategy, mean number of clauses in Metagol’s
definition, mean branching (br) and mean number of successful evaluations of other
proofs.

nds
(tree)

nds
(UT)

nds
(T)

cls
(UT)

cls
(T)

brs
(UT)

brs
(T)

evals
(UT)

evals
(T)

fails
(UT)

fails
(T)

a 3 2 2 2 4 3 1 1 1 13 13

b 6 6 - 4 - 10 - 1 - 13 -

c 4 4 - 3 - 7 - 0 - 14 -

d 11 6 - 4 - 8 - 0 - 14 -

e 2 2 4 1 3 1 1 0 4 14 10

f 6 6 - 4 - 7 - 0 - 14 -

g 4 4 4 3 5 7 1 0 2 14 12

h 5 4 4 3 5 6 1 0 2 14 12

i 10 3 3 3 4 12 1 1 3 13 11

j 8 5 - 4 - 16 - 2 - 12 -

k 4 4 4 3 5 7 1 0 2 14 12

l 8 3 3 3 4 10 1 1 3 13 11

m 7 - - - - - - - - - -

n 19 - - - - - - - - - -

o 11 6 - 5 - 28 - 1 - 13 -

Fig. 5. Number of nodes (nds), clauses (cls), branches (brs) and successful and failed
evaluations of other proofs for each learned strategy. A “-” denotes failure to find a
strategy.

impI type(type, a0).
impI type(type, a1).
assm type(type, a2).

rule impI(tactic, a0, a1).
rule impI(tactic, a1, a2).
assumption(tactic, a2, acomp).

episode(strata, [[strata, strat, a0, acomp]], []).

strat a(strat, A,B) ← assm type(type,A), assumption(tactic, A,B).
strat a(strat, A,B) ← strat a 1(strat, A,C), strat a(strat, C,B).

strat a 1(strat, A,B) ← impI type(type,A), rule impI(tactic, A,B).

Fig. 6. Background information for lemma A in Figure 3 and strategy learned using
typed MIL

	Typed meta-interpretive learning for proof strategies

