Processing Markov Logic Networks with GPUs

Carlos Alberto Martinez-Angeles®, Inés Dutra?, Vitor Santos Costa?, and
Jorge Buenabad-Chévez'

! Departamento de Computacién, CINVESTAV-IPN
Av. Instituto Politécnico Nacional 2508, México D.F. 07360, México.
2 Departamento de Ciéncia de Computadores, CRACS INESC-TEC LA and
Universidade do Porto, Rua do Campo Alegre 1021, 4169-007, Porto, Portugal
camartinez@cinvestav.mx, jbuenabad@cs.cinvestav.mx, {ines,vsc}@dce.fc.up.pt

Abstract. Graphics Processing Units (GPUs) are being widely used to
improve performance of machine learning and logic programming sys-
tems. Next, we propose using this technique to improve the performance
of Markov logic programs. In this paper we focus on the first step of the
inference phase, the grounding of first-order logical formulas composing
a Markov network. Our system, Tu2GPU, is based on the state-of-the-
art high-performance Tuffy system. We compare Tu2GPU’s performance
to that of the Alchemy, Tuffy and Rocklt systems on three widely used
applications. Results show that Tu2GPU is up to 15x times faster than
the other systems.

Keywords: Statistical Relational Learning, Markov Logic, Markov Logic
Networks, Datalog, Parallel Computing, GPUs

1 Introduction

Markov logic “combines first-order logic and Markov networks. A knowledge
base in Markov logic is a set of first-order [logic| formulas with weights” [2]. The
structure of such formulas and their weights is managed as a Markov network,
such that they establish soft constraints: worlds that violate a formula are less
likely but still possible. In contrast, formulas in standard first-order logic are
hard constraints: a world that violates a formula is not possible.

Markov logic networks have been widely adopted, and various systems have
been developed with it including: the system by We et al. to refine Wikipedia’s
Infobox Ontology [10]; Riedel and Meza-Ruiz’s system to carry out collective
semantic role labelling [7]; and in Natural Language Processing (NLP) [2, p. 97].

We claim that GPU processing can significantly expedite grounding, the most
time consuming step of MLN processing which has been found to take up to
96% of the execution time of some applications [4]. To verify our hypothesis, we
designed Tu2GPU, a Markov Logic system based on: Tuffy [4], YAP Prolog [8],
and GPU-Datalog, a GPU-based engine that evaluates Datalog programs [3].
We compare the performance of Tu2GPU to that of Alchemy [2], Tuffy and
Rocklt [5], with three applications: information extraction, entity resolution and
relational classification. The performance of Tu2GPU is on par or better than
the other systems for most applications.

2 Processing MLNs with GPUs

2 Related Work

The wide adoption of Markov logic for various types of applications has fostered
the development of various systems and research on improvements. Alchemy
was the first Markov logic system implementation [2]. It is one of the most
complete systems, including various algorithms for inference following a top-
down approach and various techniques for learning weights and structure.
Tuffy was developed by Feng Niu et al. [4]. It relies on Postgresql relational
database management system (RDBMS) to perform inference. Tuffy follows a
bottom-up approach to solve the grounding step. This allows the grounding to
be expressed as SQL queries which, combined with query optimization by the
RDBMS, allows Tuffy to complete the grounding faster than Alchemy [4].
Rocklt is a recent system by Noessner et al. [5]. It treats the inference problem
as an integer linear programming problem and includes a new technique called
cutting plane aggregation (CPA) which, coupled with shared-memory multi-core
parallelism during most of the inference, allow RocklIt to outperform all other
systems. Other work on Markov logic relevant to ours include [1] and [6].

3 Markov Logic

We present in this section some Markov logic concepts through an example
program. The example is presented using Datalog syntax. Markov logic pro-
grams and Datalog programs consist of a finite number of facts (Extensional
Database [9]) and rules (Intensional Database), except that Datalog rules have
no weights attached. Figure 1 shows the Smokers Markov logic program [2], which
estimates the probability of people having cancer based on who their friends are
and whether or not their friends smoke. In Markov logic, a knowledge base (KB)
is a set of first-order logic formulas with weights [2]. The Smokers KB is shown
at the top of Figure 1: in English and in first-order logic (on the left); in clausal
form in Datalog syntax; and the weights of the formulas. The bottom of Figure 1
shows: (on the left) some evidence (known facts) as a set of records in two rela-
tional tables, F'r (Friends) and Sm (Smokes); some processing of the rules; and
the results stating the probability that John, Anna and Bob may have cancer
considering the given facts.

Rules can be created by domain experts, or learned from training data; Induc-
tive Logic Programming (ILP) has been used for this purpose [2, p. 52]. Weight
assignment is difficult because different formulas correlate with each other; hence
it is almost always learned from training data [1,2]. It is common to use the in-
ference phase with an already configured KB and a number of facts in relational
tables, as in our experiments in Section 5.

4 Our GPU-based Markov Logic Platform

Our platform Tu2GPU was designed to accelerate the grounding step, as this
is often the most time consuming. Its main components are: the Tuffy Markov

Processing MLNs with GPUs 3

ENGLISH AND FIRST-ORDER LOGIC CLAUSAL FORM (Datalog syntax) WEIGHT
Friends of friends are friends:

Fr(x,y) & Fr(y,z) => Fr(x,z) Fr(x,z) :- Fr(x,y), Fr(y,z) 0.7
Smoking causes cancer:

Sm(x) => Ca(x) Ca(x) :- Sm(x) 1.5

If two people are friends and one
smokes, then so does the other:

Fr(x,y) & Sm(x) => Sm(y) Sm(y) :- Fr(x,y), Sm(x) 1.1
EVIDENCE PROCESSING OF VALID GROUNDINGS RESULTS
Fr(John,Anna) Fr(John,Anna) & Fr(Anna,Bob) => Fr(John,Bob) 0.92 Ca(John)
Fr (Anna,Bob) Sm(Anna) => Ca(Anna) 0.59 Ca(Anna)
Fr(Gary,Frank) Fr(John,Anna) & Sm(John) => Sm(Anna) 0.58 Ca(Bob)
Sm(John)

PROCESSING OF INVALID GROUNDINGS

Fr(John, Anna) & Fr(Gary, Frank) => {}
Sm(Gary) => Ca(Gray)
Fr(Gary, Frank) & Sm(Gary) => Sm(Frank)

Fig.1. The Markov logic Smokers example. Fr() is short for Friends(), Sm() for
Smokes() and Ca() for Cancer().

logic system [4], the YAP Prolog system [8] and GPU-Datalog [3]. The latter
evaluates Datalog programs with a bottom-up approach using GPU kernels that
implement the relational algebra operations selection, join and projection. For
GPU-Datalog to be able to run Markov logic programs, its original version was
extended with: management of stratified negation; improved processing of built-
in comparison predicates; processing of OR logic in addition to AND logic (to
simplify specifying SQL queries and to improve their processing); and an inter-
face to communicate directly with PostgreSQL.

Figure 2 shows the interaction between the main modules of our platform
in running a Markov logic program. Tuffy is called first, receiving three input
files: i) the evidence (facts) file; ii) the MLN program file; and the queries. Tuffy
starts by creating a temporary database in PostgreSQL to store the evidence
data and partial results. It then parses the program and query files in order to
determine predicates and to create a (relational) table for each predicate found.
Tables are then loaded with the evidence data.

Original Tuffy would then start the grounding phase. In Tu2GPU, this phase
is performed by GPU-Datalog, but, as Tuffy uses OR-logic to specify a program,
we first translate it to Datalog AND-logic and syntax. Then the Datalog program
is sent to YAP, using a Java-Prolog interface, to compile it into a numerical
representation (NR) where each unique string is assigned a unique integer id.
YAP then sends the program NR to GPU-Datalog to process the grounding. By
using an NR, our GPU kernels show relatively short and constant processing time
because all tuples in a table, being managed as sets of integers, can be processed
in the same amount of time. Tuffy also uses an NR for evidence loaded in the
database; this simplified extending it with GPU processing.

4 Processing MLNs with GPUs
Postgre GPU send rules
Tuffy sqL bﬁ(rans\ate rules
- load tables : : : send rules
ransiate rules ’D i 3
: : readtables
send rules ' : u perform

. translate rules

: ’Tgroundmg
H : write results 5
send rules : :
readtables U

perform
grounding finish grounding

finish grounding

]

write results. read groundings

finish grounding ‘ perform search U

finish grounding

translate rules | H display results

\ s ! 5

Fig. 2. Tu2GPU-Datalog modules running a Markov logic program.

Tuffy and Tu2GPU use the Knowledge-Based Model Construction [4] (KBMC)
algorithm to determine those clauses, facts and rules that are relevant to a query.
The relevant facts are in the database and GPU-Datalog reads them from there
to perform the first step (of two) of the grounding process: determining the active
facts, i.e., facts whose truth value flips (changes from true to false or vice versa)
during the grounding process. GPU-Datalog writes back to the database those
active facts whose truth value changed to true. The second step determines the
active rules, rules that can be violated (i.e., if their truth value becomes false) by
flipping zero or more active facts or subgoals relevant to the rules. For this step,
Tu2GPU translates the program rules from SQL into Datalog, and YAP into the
NR used by GPU-Datalog. When GPU-Datalog finishes the grounding, it writes
the found active rules to the database. At the end of both grounding steps, Tuffy
searches for the most likely world of the MLN and displays the result.

5 Experimental Evaluation

This section describes our experimental evaluation of the performance of Tu2GPU
compared to that of the systems Alchemy [2], Tuffy [4] and RockIt [5].

5.1 Applications and Hardware-software Platform

We used the following applications available with the Tuffy package. Table 1
shows some of their characteristics. For two of them (ER and RC), more tuples
were randomly generated to test the systems with bigger data (right column).

— Entity Resolution (ER): a simple, recursive MLN to determine if a person
has cancer based on who his/her friends are and their smoking habits.

— Relational Classification (RC): classifies papers into 10 categories based on
authorship and on the categories of other papers it references.

— Information Extraction (IE): given a set of citations divided in tokens, rules
with constants are used to extract structured records.

Processing MLNs with GPUs 5

Inference|Evidence|Tuples in relations
Application rules| relations|Original Random
ER 3 3 8 (310,000)
RC 15 4| 82,684 (441,074)

IE 1024 18| 255,532 (na)

Table 1. Applications Characteristics.

1 1

00000 Tu2GPU 0000
Tuffy e

10000 ¢ Alchemy o Alchemy mm—
Rockit mmmms Rock|t s

1000 ¢
1000 ¢

100 ¢

Time (sec)
Time (sec)

10 ¢

100 ¢
1L

01 ¢

0.01

Fig. 3. Performance of the systems with original (left) and random (right) datasets.
Note that the graphs are in log. scale.

We ran our experiments in the following hardware-software platform. Host:
an AMD Opteron 6344, 12 cores CPU, with 64 GB DRAM. GPU: a Tesla
K40c, 2880 CUDA Cores, with 12 GB GDDR5 memory and CUDA Capability
3.5. Software: CentOS 7, PostgreSQL 9.5 and CUDA Toolkit 7.0.

5.2 Results

Figure 3 (left) shows the performance of the systems using the original datasets
in the Tuffy package. Our system was the fastest in 2 out of the 3 applications,
but only by a few seconds relative to standard Tuffy. Alchemy was the fastest
in ER because the dataset is small and does not incur overhead setting up a
database. Figure 3 (right) shows the performance of the systems with our ran-
domly generated datasets. For ER, our system was 15 times faster than RockIt
and 77 times faster than Alchemy. Tuffy did not finish the grounding after more
than 3 hours. However, Rocklt was 2.5 times faster than our system for RC.
Both Tuffy and Alchemy did not finish after more than 5 hours. We were unable
to execute IE in Rocklt, hence the empty space in the graph.

We performed a detailed analysis to determine why our system performed so
well in ER and so poorly in RC. For ER, our random data combined with its
recursive clauses, generates many more recursive steps, 24 vs 2 in the original
data. Each recursive step creates new tuples that need to be evaluated again.
In our system, approximately 1,000,000 new tuples where generated in each
iteration, most of them to be latter discarded by our duplicate elimination kernel.
Since our system was designed around these recursive applications, grounding

6 Processing MLNs with GPUs

was finished rather quickly while other systems struggled with costly joins that
do not capitalize on parallel processing.

In RC, the number of recursive steps was 2 for both datasets. We hence
analyzed the execution times of each part of our system. Both groundings take
about 2 minutes to complete, loading data and other tasks take 30 seconds, but
the search phase takes an astounding 43 minutes. In contrast, the times for ER
are about 8 seconds for both groundings, 21 seconds for data loading and other
tasks, and 16 seconds for the search. In the search phase, ER, despite being a
bigger dataset, uses only 252,249 tuples, while RC uses 5,586,900 tuples.

6 Conclusions

We have presented a system that accelerates the grounding step in MLNs by
combining Tuffy with our GPU-Datalog engine. Its performance is on par or
better than other well-known MLN systems. Our results show that the benefit
of performing the grounding phase on the GPU outweighs the overhead of using
a database and of GPU I/O, even for rather small datasets. Our system can be
greatly improved by also performing the search step of the inference phase in the
GPU. This would require the parallelization of a SAT solver. There are several
available in the literature and we could adapt one to our needs.

Acknowledgements. Carlos gratefully acknowledges grants from Cinvestav-IPN.

References

1. K. Beedkar et al. Fully parallel inference in markov logic networks. In 15th GI-
Symposium Database Systems for Business, Technology and Web, Germany, 2013.
Bonner Kllen.

2. P. Domingos and D. Lowd. Markov Logic: An Interface Layer for Artificial Intel-
ligence. Morgan and Claypool, 1st edition, 2009.

3. C. A. Martinez-Angeles et al. Relational Learning with GPUs: Accelerating Rule
Coverage. Intl. J Parallel Programming, IN PRESS, 2015.

4. F. Niu et al. Tuffy: Scaling Up Statistical Inference in Markov Logic Networks
Using an RDBMS. Proc. VLDB Endow., 4(6):373-384, March 2011.

5. J. Noessner et al. Rockit: Exploiting parallelism and symmetry for MAP inference
in statistical relational models. CoRR, abs/1304.4379, 2013.

6. S. Riedel. Improving the accuracy and efficiency of map inference for markov
logic. In Proceedings of the 24th Annual Conference on Uncertainty in AI (UAI
'08), pages 468-475, 2008.

7. S. Riedel and I. Meza-Ruiz. Collective semantic role labelling with markov logic. In

Proceedings of the Twelfth Conference on Computational Natural Language Learn-

ing, pages 193-197, Stroudsburg, 2008. Association for Computational Linguistics.

V. Santos-Costa et al. The YAP Prolog system. TPLP, 12(1-2):5-34, 2012.

J. Ullman. Principles of Database and Knowledge-Base Systems, Volume I. Com-

puter Science Press, 1988.

10. F. Wu and D. S. Weld. Automatically refining the wikipedia infobox ontology.

In Proceedings of the 17th International Conference on World Wide Web, pages
635—644, New York, 2008. ACM.

© o

