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Abstract. We show a logical aggregation method that, combined with
propositionalization methods, can construct novel structured biological
features from gene expression data. We do this to gain understanding
of pathway mechanisms, for instance those associated with a particular
disease.
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1 Introduction and Background

In the field of Systems Biology researchers are often interested in identifying
perturbations within a biological system that are different across experimental
conditions. In this paper we use the example of identifying differences in pertur-
bations between two types of Lung Cancer.

A typical pipeline for this kind of task has three distinct stages. The first
stage is to use a technology such as a microarray or RNAseq to measure gene
expressions across the genome in a number of samples from each of the ex-
perimental conditions. The second stage is to identify a subset of genes whose
expression values differ across conditions. This stage is commonly achieved by
performing differential expression analysis and ranking genes by a statistic such
as fold change values. A statistical test is then used to identify the relevant set
to take forward to stage 3. Alternatively for stage 2 researchers may train a
model using machine learning to classify samples into experimental conditions,
often using an attribute value representation where the features are a vector of
gene expression values. This approach has the advantage that the constructed
model may have found dependencies between genes which would not have been
identified otherwise. Researchers will use the ‘top’ features from the model to
identify the set of genes to take on to stage 3.

In stage 3 researchers look for connections between these genes, for example
by performing Gene Set Enrichment Analysis (GSEA) [1]. Here the set of genes
identified in stage 2 are compared with predefined sets of genes. Each predefined
set of genes indicate a known relation. For example having a related function,
existing in the same location in the cell or taking part in the same pathway.
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To bring background knowledge of relations into the model building process,
past ILP research [2] integrated stage 2: finding differentially expressed genes and
stage 3: GSEA, into a single step. This was achieved using Relational Subgroup
Discovery, which has the advantage of being able to construct novel sets by
sharing variables across predicates that define the sets. For example a set could
be defined as the genes that have been annotated with two Gene Ontology terms.

Other ways researchers have tried to integrate the use of known relations is
by adapting the classification approach. New features are built by aggregating
across a predefined set of genes - for example by taking an average expression
value for a pathway, see [3] for a review of these methods. A major limitation of
current classification approaches is that the models are constructed from either
genes or crude aggregates of sets of genes, and so ignore the detailed relations
between entities in a pathway. In order to incorporate more complex relations a
network representation is needed. It is important that this representation is ap-
propriate such that biological relations are adequately represented. For example
a simple directed network of genes and proteins does not adequately represent
the complexities of biochemical pathways such as the dependencies of biochem-
ical reactions. To do this bipartite graphs or hypergraphs can be used (see [4]
for more details).

One way to incorporate more complex relations is by creating topologically
defined sets, for example by performing community detection in a gene regulatory
network. However, this approach can create crude clusters of genes, that do not
account for important known biological concepts. Biologists are also interested in
complex biological interactions rather than just sets of genes, as we now describe.

Network motif and frequent subgroup mining [5] are methods that can look
for structured patterns in biological networks. However, in these approaches the
patterns are often described in a language which is not as expressive as first
order logic. This means they are unable to find patterns with uninstantiated
variables, or with relational concepts such as paths or loops. For example, in
Figure 1a we show a toy example of four instantiations of the same graph, three
in class A and 1 in class B. A frequent pattern distinguishing between the classes
may be a chain of three on reactions. This may be represented in Prolog as
on(a),on(X),on(c),link(a,X),link(X,c). However, network motif finding can only
work with patterns such as aon → bon → con, and hence would not be able to
find the repeated pattern.
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Fig. 1. Example graphs. Node color indicates expression activity. Yellow: on; blue: off.
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To our knowledge only one previous work has looked to use ILP for this
task [6]. Here the authors propose identifying features consisting of the longest
possible chain of vertices in which non-zero vertex activation implies a certain
(non-zero) activation in its successors, which they call a Fully Coupled Flux.

The aim of this paper is to identify pathway activation patterns that dif-
fer between biological samples of different classes, in order to give a biologist
different information than models built from simple gene features.

An example of when such a pattern is useful is in consistency modelling [7].
Here a pattern of inconsistency, an example of which is given in Figure 1b, is
matched against gene regulatory networks. Then for each match Answer Set
Programming techniques are used to amend the pathways and remove the in-
consistency. Similar work has been carried out in ILP where biological pathways
have been constructed and amended [8]. The patterns identified with our ap-
proach could be used in a similar task to further understand the system level
perturbations between classes.

2 Methods

We use structural pathway information to build first order features that are used
to construct classification models that discriminate between two lung cancer
types. We collate raw data from online sources, process this data to create a
Prolog knowledge base, and then learn first order models using this knowledge
base.

2.1 Raw Data

We obtained from the GEO a two class Lung Cancer data set containing 37 SCC
examples and 33 AC examples; the accession number is GSE2109.The classes
correspond to different types of Lung Cancer. For details of this task please
see [9]. We use the Reactome database to provide the background knowledge
about pathways. Reactome [10] is a collection of manually curated peer reviewed
pathways. Reactome is made available as an RDF XML Biopax level 3 file file,
which allows for simple passing using SWI-Prolog’s semantic web libraries.

2.2 Data Processing

Reactome uses the bipartite network representation of entities and reactions.
We extract and process this to create a reaction centric graph, where nodes are
reactions and directed edges are labelled either as ‘activation’ ,‘inhibition ’ or
‘follows’ corresponding to how reactions are connected. Boolean networks [11] are
a common abstraction in biological research, but these are normally applied at
the gene or protein level not at the reaction level. In order to use a boolean net-
work abstraction on a reaction network, we apply a logical aggregation method
that aggregrates measured probe values in the microarray into reactions.



4 Using ILP to Identify Pathway Activation Patterns in Systems Biology

The first step of this aggregation is the discretization of the probe values into
binary values. We do this using Barcode [12], a tool for converting the continuous
probe values to binary variables by applying previously learnt thresholds to
microarray data. This makes it possible to compare gene expressions, both within
a sample and between samples potentially measured by different arrays.

Once we have binary probe values, we use the structure provided by the
Reactome RDF graph and key biological concepts to build reaction level features.
Each reaction has a set of inputs that are required for a particular reaction.
In addition a reaction may be controlled (activated or inhibited) by particular
entities. Entities in Reactome include protein complexes and protein sets, which
can themselves comprise of other complexes or sets. We interpret each reaction
input as a logical circuit. The relationship between probes and proteins is treated
as an OR gate, protein complexes as an AND gate, and protein sets also as an OR
gate. A final step takes into account the activation or inhibition of the reaction
by any controlling entities. In this way we can say that a reaction ‘can proceed’
if and only if the input circuit evaluates to true. If a reaction ‘can proceed’ then
we say that it is ‘on’ otherwise we say that it is ‘off’.

2.3 Searching for Pathway Activation Patterns

We experimented with two propositionalization methods, Warmr and Treeliker,
separately and then combining them. We search for features independently in
each pathway and with a language bias that suitably constrains the search in
order to achieve a manageable number of structures.

The first method, Warmr [13], is the first order equivalent of item set and
association rule mining. It can be used as a propositionalization method by
independently searching for frequent queries in the two classes. An advantage of
Warmr is that it is possible to define background predicates for relevant concepts.
For example a path or loop of all ‘on’ reactions. As Warmr does not prune by
relevance to classification tasks it can however quickly build to an intractable
search with many irrelevant or similar queries/features built.

The second method, TreeLiker [14], is a modern ILP tool that implements a
number of algorithms. It has been shown to produce long features by building
features bottom up in a blockwise manner. This is desirable for our task as longer
features will provide more mechanistic insight to a biologist. A limitation is that
the features are ‘tree like ’ which means there can be no cycles in the variables.
Unlike Warmr, TreeLiker does not support explicit background knowledge and
therefore all relevant relations need to be preprocessed using Prolog.

Our combined method takes a top feature constructed by TreeLiker and uses
this as the basis for the language bias input into Warmr. We then add language
bias constraints that guide Warmr to add cycles to the tree like feature. This
results in long cyclical features that Warmr would not be able to find on its own.

To evaluate the generated features we use them to build classifiers, to estimate
their ability to discriminate between the two lung cancer types. We use the J48
and JRIP tree and rule building algorithms of the Weka package to do this,
chosen because these produce interpretable models.
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We give the following example features found by 1) Warmr, 2) TreeLiker and 3)
our combined approach:

1:array(A),reaction(A,B,1),reaction(A,C,0),link(C,B,D),link(B,C,E).

2:reaction(A,0), link(A,B,follows), reaction(B,1), link(B,C,_),

reaction(C,0), link(A,D,activation), reaction(D,0).

3:array(A),reaction(A,B,0),link(B,C,follows),reaction(A,C,1),

link(C,D,E),reaction(A,D,0),link(B,F,activation),reaction(A,F,1),

link(F,D,E),link(D,G,E),reaction(A,G,0)

Feature 1 is a simple cyclical feature found by Warmr, the variable A matches
one sample. Feature 2 is a longer tree like feature found by TreeLiker. Notice
TreeLiker does not require a variable for the sample. Feature 3 is found by our
combined method, it is both long and contains a cycle.

To date we have found promising features for the Apoptosis pathway, which,
using the Jrip model, achieved mean 81.29% accuracy (std 13%) using 10 fold
cross validation. This is a comparable accuracy to that of a model built with raw
expression values, but now we have identified pathway activation perturbations
rather than just gene expression perturbations.

4 Discussion

The Pathway Activation Patterns we found using this approach are in clinically
relevant pathways. These patterns may give diagnostic and clinical insights that
biologists can develop into new hypotheses for further investigation.

This work has shown the potential of ILP methods for mining the abundance
of highly structured biological data. Using this method we have identified dif-
ferences in Pathway Activation Patterns that go beyond the standard analysis
of differentially expressed genes, enrichment analysis, gene feature ranking and
pattern mining for common network motifs. We have also demonstrated the use
of logical aggregation with a reaction graph and how this simplifies the search
for hypotheses to an extent where searching all pathways is tractable. We have
introduced a novel approach that uses Warmr to extend features initially iden-
tified with TreeLiker. This makes it possible to search for long cyclical features.
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