
Learning Deduction Rules by Induction

Chiaki Sakama1, Tony Ribeiro2 and Katsumi Inoue3

1 Wakayama University
sakama@sys.wakayama-u.ac.jp

2 The Graduate University for Advanced Studies (Sokendai)
tony ribeiro@nii.ac.jp

3 National Institute of Informatics
inoue@nii.ac.jp

Abstract. This paper provides an attempt for learning deductive inference rules
by induction. Given a set S of propositional formulas and their logical conse-
quences T , we consider the problem of learning deductive inference rules that
produce T from S. To this end, we use an induction framework LF1T which
learns logic programs from interpretation transitions. Experimental results show
that LF1T successfully produces deductive inference rules from input transitions.

1 Introduction

Formal systems based on logic reason about knowledge and data using an axiomatic
system that is specified and built-in by human engineers. In [3], Sakama and Inoue
pose a question whether it is possible to develop artificial (general) intelligence that au-
tomatically produces a logic underlying any given data set. They introduce a conceptual
framework for learning logics in which a machine can acquire logical inference rules
inductively. Induction or ILP has been used as an inference mechanism of machine
learning, while little study has been devoted to the challenging topic of learning logics.

In this paper, we implement learning deductive inference rules using the LF1T al-
gorithm [1, 2] and examine whether LF1T successfully produces deductive inference
rules. The rest of this paper is organized as follows. Section 2 reviews a conceptual
framework for learning logics. Section 3 realizes learning logics using LF1T and pro-
vides experimental results.

2 Learning Logics

We review a conceptual framework for learning logics that is introduced in [3]. There
are an agent A and a machine M. The agent A, which could be a human or a com-
puter, is capable of deductive reasoning: it has a set L of axioms and inference rules
in classical logic. Given a (finite) set S of formulas as an input, the agent A produces
a (finite) set of formulas T such that T ⊆ Th(S) where Th(S) is the set of logi-
cal consequences of S. On the other hand, the machine M has no axiomatic system
for deduction, while it is equipped with a machine learning algorithm C. Given input-
output pairs (S1, T1), . . . , (Si, Ti), . . . (where Ti ⊆ Th(Si)) of A as an input to M,



Input Agent A

Si
� deduction

system L �

Output

Ti (⊆ Th(Si))

��
Input MachineM

(Si, Ti)
� learning

system C �

Output

K

Fig. 1. Learning Logics [3]

the problem is whether one can develop an algorithm C which successfully produces
an axiomatic system K for deduction. An algorithm C is sound wrt L if it produces an
axiomatic system K such that K ⊆ L. An algorithm C is complete wrt L if it produces
an axiomatic system K such that L ⊆ K. Designing a sound and complete algorithm C
is called a problem of learning logics (Figure 1). In this framework, an agent A plays
the role of a teacher who provides training examples representing premises along with
entailed consequences. The output K is refined by incrementally providing examples.
We consider a deduction system L while it could be a system of arbitrary logic, e.g.
nonmonotonic logic, modal logic, fuzzy logic, as far as it has a formal system of infer-
ence. Alternatively, we can consider a framework in which a teacher agent A is absent.
In this case, given input-output pairs (Si, Ti) as data, the problem is whether a machine
M can find an unknown logic (or axiomatic system) that produces a consequence Ti

from a premise Si.
The abstract framework has challenging issues of AI including the questions:

1. Can we develop a sound and complete algorithm C for learning a classical or non-
classical logic L?

2. Is there any difference between learning axioms and learning inference rules?

3. Does a machineM discover a new axiomatic system K such that K � F iff L � F
for any formula F?

The first question concerns the possibility of designing machine learning algorithms
that can learn existing logics (or axiomatic systems) from given formulas. The second
question concerns differences between learning Gentzen-style logics and Hilbert-style
logics. The third question is more ambitious: it asks the possibility of AI’s discovering
new logics that are unknown to human mathematicians.

In [3], Sakama and Inoue provide simple case studies concerning the first question.
They represent a formal system L of propositional logic using metalogic programming
and show that deductive inference rules can be reproduced as meta-rules of logic pro-
grams. In the next section, we implement the framework using the LF1T induction
algorithm and show experimental results.



3 Learning Deductive Rules by LF1T

Learning from 1-step transitions (LF1T) [1] is a framework for learning normal logic
programs from transitions of interpretations. Here we apply LF1T for learning definite
logic programs, a subclass of normal logic programs that do not contain negation as
failure. Let B be the set of all ground atoms (Herbrand base) and P a definite logic
program (or simply, a program) that consists of rules of the form:

a← b1, . . . , bn (n ≥ 0) (1)

where a, b1, . . . , bn are ground atoms from B. For each rule r of the form (1), the atom a
is the head (written h(r)) and the conjunction b1, . . . , bn is the body of the rule (written
b(r)). The body is identified with the set of atoms {b1, . . . , bn}. A rule with the empty
body is a fact. LF1T produces a program from a pair of interpretations as follows:

Input: E ⊆ 2B × 2B

Output: a program P such that J = TP (I) holds for any (I, J) ∈ E

where TP (I) = {h(r) | r ∈ P and b(r) ⊆ I } [4]. A rule r is consistent with (I, J)
if b(r) ⊆ I implies h(r) ∈ J , otherwise, r is inconsistent with (I, J). A program P is
consistent with (I, J) if every rule in P is consistent with (I, J). In LF1T, a positive
example is input as a one-step state transition from I to J , which is given as a pair
of Herbrand interpretations. LF1T outputs a single program which realizes all state
transitions given in the input.

To build a program, we use a top-down version of LF1T [2], which generates hy-
potheses by specialization from the most general rules until a program is consistent
with all input state transitions. More precisely, LF1T starts with the initial program
P = { a ←| a ∈ B}. Then LF1T iteratively analyzes each transition (I, J). For each
atom a that does not appear in J , LF1T produces an anti-rule:

a←
∧

bi∈I

bi .

Any rule of P that subsumes such an anti-rule is not consistent with the transition
and must be revised. To this end, a rule is minimally specialized by introducing an
atom cj ∈ B \ I to the body of the rule to make P consistent with the new transition
by avoiding the subsumption of all anti-rules produced by (I, J). After such minimal
specialization, P becomes consistent with the new transition while remaining consistent
with all previously analyzed transitions.

We use LF1T as a learning system C in Figure 1. We assume a (propositional logic)
deduction system L represented by a metalogic program P that provides transitions
(I, J) satisfying J = TP (I). Given (I, J) as input, our goal is to examine whether
LF1T can reproduce correct inference rules of deduction represented by meta-rules in
P . To represent formulas by interpretations, we use a meta-predicate hold and consider
a set of atoms of the form

hold(F )

where F is a formula in propositional logic. Using the meta-expression, for example,
two sets of formulas S = { p, p → q } and T = { p, p → q, q } where T ⊆ Th(S)



are respectively represented as the sets of atoms I = {hold(p), hold(p → q)} and
J = {hold(p), hold(q), hold(p→ q) }. We next provide the results of experiments.

Let B = {hold(p), hold(q), hold(r), hold(p → r) }. We address the process of
constructing a rule with the atom hold(r) in the head.

Step 0: LF1T starts with the most general rule:

hold(r)← . (2)

Step 1: Suppose that the transition (∅, ∅) is given. The rule (2) is inconsistent with this
transition, so that (2) is (minimally) specialized into four rules by introducing an
atom from B:

hold(r)← hold(p), (3)
hold(r)← hold(q), (4)
hold(r)← hold(r), (5)
hold(r)← hold(p→ r). (6)

Those rules are consistent with the transition (∅, ∅).
Step 2: Suppose that the transition ({hold(p)}, {hold(p)}) is given. The rule (3) is

inconsistent with this transition, so that (3) is specialized into three rules:

hold(r)← hold(p), hold(q),

hold(r)← hold(p), hold(r),

hold(r)← hold(p), hold(p→ r).

These 3 rules are respectively subsumed by the rules (4), (5) and (6) in Step 1,
hence removed. As a result, the rules (4), (5) and (6) remain.

Step 3: Suppose that the transition ({hold(q)}, {hold(q)}) is given. The rule (4) is
inconsistent with this transition, and is removed after specialization. As a result of
subsumption, three rules (5), (6) and the newly constructed rule (7) remain.

hold(r)← hold(p), hold(q). (7)

Step 4: Suppose that the transition ({hold(p → r)}, {hold(p → r)}) is given. The
rule (6) is inconsistent with this transition, and is removed after specialization. As
a result of subsumption, two rules are newly constructed:

hold(r)← hold(p→ r), hold(p), (8)
hold(r)← hold(p→ r), hold(q), (9)

Now four rules (5), (7), (8) and (9) remain.
Step 5: Suppose that the transition ({hold(p), hold(q)}, {hold(p), hold(q)}) is given.

The rule (7) is inconsistent with this transition, and is removed after specialization.
As a result of subsumption, three rules (5), (8) and (9) remain.



Step 6: Suppose that the transition ({hold(p→ r), hold(q)}, {hold(p→ r), hold(q)})
is given. The rule (9) is inconsistent with this transition, and is removed after spe-
cialization. As a result of subsumption, two rules (5) and (8) remain.

Step 7: Suppose that the transition ({hold(p→ r), hold(p)}, {hold(p→ r), hold(p),
hold(r)}) is given. Two rules (5) and (8) are consistent with this transition and
remain as they are.

The remaining two rules (5) and (8) are consistent with any other transitions (I, J) such
that J represents logical consequences of I under a metalogic program P . Then LF1T
produces those rules as output. The rule (5) is tautology and (8) represents Modus
Ponens. The input-output of LF1T is summarized in Table 1.4

Table 1. LF1T Input-Output

input output
(∅, ∅) hold(r)← hold(p).

hold(r)← hold(q).
hold(r)← hold(r).
hold(r)← hold(p→ r).

({hold(p)}, {hold(p)}) hold(r)← hold(p).
hold(r)← hold(q).
hold(r)← hold(r).
hold(r)← hold(p→ r).

({hold(q)}, {hold(q)}) hold(r)← hold(q).
hold(r)← hold(r).
hold(r)← hold(p→ r).
hold(r)← hold(p), hold(q).

({hold(p→ r)}, {hold(p→ r)}) hold(r)← hold(r).
hold(r)← hold(p→ r).
hold(r)← hold(p), hold(q).
hold(r)← hold(p→ r), hold(p).
hold(r)← hold(p→ r), hold(q).

({hold(p), hold(q)}, {hold(p), hold(q)}) hold(r)← hold(r).
hold(r)← hold(p), hold(q).
hold(r)← hold(p→ r), hold(p).
hold(r)← hold(p→ r), hold(q).

({hold(p→ r), hold(q)}, {hold(p→ r), hold(q)}) hold(r)← hold(r).
hold(r)← hold(p→ r), hold(p).
hold(r)← hold(p→ r), hold(q).

({hold(p→ r), hold(p)}, {hold(p→ r), hold(p), hold(r)}) hold(r)← hold(r).
hold(r)← hold(p→ r), hold(p).

We address other results of experiments.

4 The experimental archive is found at http://www.wakayama-u.ac.jp/˜sakama/ILP2015-short/



– Let B = {hold(p), hold(¬p), hold(q), hold(¬q), hold(p→ q), hold(q → r),
hold(p→ r) }. Then LF1T produces

hold(¬p)← hold(p→ q), hold(¬q) (Modus Tollens)
hold(p→ r)← hold(p→ q), hold(q → r) (Hypothetical Syllogism)

– Let B = {hold(p), hold(¬p), hold(q), hold(¬q), hold(p ∨ q), hold(¬p ∨ ¬q),
hold(r ∨ s), hold(¬r ∨ ¬s), hold(p→ r), hold(q → s) }. Then LF1T produces

hold(p)← hold(p ∨ q), hold(¬q) (Disjunctive Syllogism)

hold(r ∨ s)← hold(p ∨ q), hold(p→ r), hold(q → s) (Constructive Dilemma)
hold(¬p ∨ ¬q)← hold(¬r ∨ ¬s), hold(p→ r), hold(q → s) (Destructive Dilemma)

– LetB = {hold(p), hold(q), hold(r), hold(p∧q), hold(q∧r), hold(p∨q), hold(q∨ r) }.
Then LF1T produces

hold(p)← hold(p ∧ q) (Conjunction Elimination)
hold(p ∧ q)← hold(p), hold(q) (Conjunction Introduction)
hold(p ∨ q)← hold(p) (Disjunction Introduction)

Thus, LF1T produces inference rules of natural deduction. Moreover, if a transi-
tion (I, J) = ({hold(q), hold(p → q)}, {hold(p)}) is provided, LF1T produces the
Fallacy of Affirming the Consequent:

hold(p)← hold(q) ∧ hold(p→ q)

that is used for abductive inference. In this way, LF1T can produce deductive or non-
deductive inferences rules from transitions that specify premises and their consequences.
Generally speaking, providing all possible transitions, LF1T will output production
rules that are minimal with respect to subsumption. A limitation is that the number of
possible transactions increases exponentially in proportion to the size of the Herbrand
base. Further optimization is needed for discovering logics from huge data.

References

1. K. Inoue, T. Ribeiro and C. Sakama. Learning from interpretation transition. Machine Learn-
ing, 94(1):51–79 (2014).

2. T. Ribeiro and K. Inoue. Learning prime implicant conditions from interpretation transition.
In: Proc. 24th International Conference on Inductive Logic Programming, Lecture Notes in
Artificial Intelligence, 9046, Springer (2015).

3. C. Sakama and K. Inoue. Can machines learn logics? In: Proc. 8th International Conference
on Artificial General Intelligence, Lecture Notes in Artificial Intelligence, 9205, pp. 341–351,
Springer (2015).

4. M. H. van Emden and R. A. Kowalski. The semantics of predicate logic as a programming
language. J. ACM 23(4):733–742 (1976).


