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Abstract. Progress in statistical learning in recent years has enabled comput-
ers to recognize objects with near-human ability. However, recent studies have
revealed particular drawbacks in current computer vision systems which sug-
gest there exist considerable differences between the way these systems function
compared with human visual cognition. Major differences are that: 1) current
computer vision systems learn high-level notions directly from the low-level fea-
ture space, which makes them sensitive to low-level characteristics changing. 2)
typical computer vision systems learn visual concepts discriminatively instead
of encoding the knowledge necessary to produce a visual representation of the
class. In this paper, we introduce a framework referred as Logical Vision which is
demonstrated on learning visual concepts constructively and symbolically. It first
constructively extracts logical facts of mid-level features, then generative Meta-
Interpretive Learning technique is applied to learn high-level notions because it
is capable of learning recursions, inventing predicates and so on. Owing to its
symbolic representation paradigm, in our implementation, Logical Vision is fully
implemented in Prolog apart from low-level image feature extraction primitives.
Experiments are conducted on learning shapes (e.g. triangles, quadrilaterals, etc.),
regular polygons and right-angle triangles. These demonstrates that learning vi-
sual concepts constructively and symbolically is effective.

1 Introduction

In the past decades, the efficiency of statistical learning enables computer vision algo-
rithms learning from vast low-level features automatically, i.e. modeling target visual
concepts by local features surrounding interest points. Recently, a statistical computer
vision learning algorithm – deep neural networks (DNNs) has been achieving impres-
sive performance on a variety of computer vision tasks [4, 5]. Although it is well known
that the success of DNNs owes to its ability of automatically extracting high-level con-
cepts, recent studies revealed some major differences between them and human visual
cognition [1, 9], which exists in most of statistical computer vision learning algorithms.

For example, it is easy to produce images that are completely unrecognizable to
humans, though state-of-the-art visual learning algorithms believe them to be recogniz-
able objects with over 99% confidence [1]. This is because its discriminative learning
paradigm makes some synthetic images deep within a classification region in the low-
level feature space can produce high confidence predictions even though they are far
from natural images in the class [1].



In other cases small perturbations to the input images, which are imperceptible to
human eyes, can arbitrarily change the classifier’s prediction [9]. Analysis from the
authors shows that the instability is caused by classifiers’ sensitivity to small changes
of low-level features on input images.

In order to address these problems, in this paper we propose a constructive vi-
sual concept learning framework, called Logical Vision, which learns high-level visual
concepts symbolically. Logical Vision first constructs mid-level conjectures to guide
the sampling of low-level features, then uses the sampled results to revise previously
constructed conjectures. With the extracted mid-level feature symbols as background
knowledge, a generalized Meta-Interpretive learner [6] is used to learn high-level vi-
sual concepts because it enhances the constructive paradigm of Logic Vision through
its ability to learn recursion, inventing predicates and learning from a single example. In
this work, we applied our Logical Vision framework to tasks involving learning simple
geometrical concepts such as triangles, quadrilaterals, regular polygons and so on. Ow-
ing to its symbolic representation, Logical Vision can be fully implemented in Prolog
given low-level image feature extraction primitives as the initial background knowl-
edge. Our experimental results show its effectiveness in learning target visual concepts
which are difficult for typical low-level feature based statistical computer vision algo-
rithms.

2 The proposed framework

In this section we introduce the framework of Logical Vision. The input for Logical
Vision consists of a set of geometrical primitives BP , one or a set of images I as back-
ground knowledge, and a set of logic facts E representing the examples as the target
visual concepts. The task is to learn a hypothesisH that defines the target visual concept
where BP , I, H |= E.

2.1 Constructive mid-level features extraction

The purpose of mid-level features extraction is to obtain necessary logical facts BA

representing mid-level features of I ∈ I.
It is realized by repeatedly executing a “conjecturing and sampling” procedure

which uses the mid-level feature conjectures to guide the sampling of low-level fea-
tures. The resulting features are then used to revise previously constructed conjectures.
Formally, mid-level feature extraction of an image I ∈ I is described as follows:

1. Sample low-level features F in a subarea (e.g. surrounding a focal point) of I , then
add F into the sampled low-level features set F .

2. Conjecture a mid-level feature (edge, region, texture, etc.) C according to F .
3. Validate the conjecture C on image I by doing few more sampling. If the validation

failed, reject C and go to 1, otherwise go to 4.
4. When C is valid, add it to mid-level feature set BA, then remove the low-level

features f(C) that encapsulated byC, the rest of low-level featuresF ′ = F−f(C).
5. If F ′ = φ, terminate the construction procedure and return BA, otherwise go to 1.



Algorithm 1 LogicalV isionPoly(BP , I,MetagolLogicalV ision, E,N)

Input: Geometrical primitives BP , input image I , examples E, Meta-Interpretive learner
MetagolLogicalV ision, sampling level N .
Output: Hypothesis of the target visual concept H;
Start:
Initialize edge points set F = φ and sampled edges set BE = φ;
Randomly sample two edge points P1 and P2, let F = F ∪ {P1,P2};
repeat

Select a pair of edge points P1,P2∈ F ;
Validate whether P1P2 forms an edge by querying edge(P1,P2,N);
if edge/3 succeeded then

Extend P1P2 on both of its directions to form a conjecture of edge C;
BE = BE ∪ C;
Remove all edge points P∈ F that lies on edge C;

else
Randomly sample a line which crosses the line segment P1P2 for new edge points, if
they are not encapsulated by any sampled edge in BE then add them into F ;

end if
until F = φ;
Find connected edges in BE to construct facts of polygons BA;
Learn a hypothesis H with BA,MetagolLogicalV ision, BP , E through MIL;
Return: H .

2.2 Meta-Interpretive Learning

After obtaining mid-level featuresBA, Logical Vision uses a generalized Meta-Interpretive
Learner to learn target visual concepts. The input of generalized Meta-Interpretive
Learning (MIL) [7] consists of a generalized Meta-Interpreter BM and domain spe-
cific primitives BP together with two sets of ground atoms as background knowledge
BA and examples E respectively. The output of MIL is a revised form of the back-
ground knowledge containing the original background knowledge BA, domain specific
primitives BP augmented with additional ground atoms representing a hypothesis H .

3 Implementation

Below we describe the implementation of Logical Vision on the task of polygon shapes
learning. The target concepts of this task are definitions of different kinds of polygons
(e.g. triangles, regular polygons, etc.). Our implementation is displayed as Algorithm 1,
which is referred as LogicalV isionPoly.

3.1 Polygon extraction

To learn the concepts of polygon shapes, we targeted the mid-level featuresBA to be ex-
tracted as polygons. They are denoted as polygon(Pol i, [Edge1,...,EdgeN]).
The process of polygon extraction can be split into two stages: edge discovery and
polygon construction. For simplicity, in the second stage LogicalV isionPoly groups



(a) (b) (c)

Fig. 1. (a) 2 edge points A and B are sampled; (b) Edge AB is conjectured but it is invalid, so
a random line crossing AB is sampled, 2 new edge points C and D are discovered; (c) Edge
AC is conjectured and it is valid, so AC is extended until no continuous edge points were found.
Finally the edge A′C′ is recorded and points A and C are removed from F .

of connected edges are collected as a list. The major challenge is to discover those
edges. Here we define the edge conjecture as:
edge(P1,P2,N):-midpoint(P1,P2,P),edge point(P1),edge point(P2),

N1 is N − 1,edge(P1,P,N1),edge(P,P2,N1).

in which P1 and P2 are the conjectured end points of an edge, N is the recursion limit
that controls the depth of edge validation and midpoint/3 finds the midpoint between
two points. The predicate edge point/1 is a primitive interacting with low-level fea-
tures on images. It is true when the color gradient magnitude of pixel P exceeds a pre-
defined threshold. We implemented an image-processing program by OpenCV [3], and
used a C++-Prolog interface to enable communication between predicate edge point/1

and input images. An example of the extraction is illustrated in Fig. 1.

3.2 MetagolLogicalV ision

The polygon extraction procedure in 3.1 sometimes results in a noisy BA (for example
in Fig. 3). This causes the depth-first search in Metagol to fail or return ground clauses
covering only one example. Thus, we altered the Metagol to evaluate hypotheses using
foil gain [8] and preserve the best one during its hypothesis searching process.

The domain specific primitivesBP ofMetagolLogicalV ison include necessary pred-
icates for learning polygon shape related concepts. For example, angle list/2 returns
all angles of a polygon and std dev bounded/2 tests whether the standard deviation
of a list of double numbers is bounded.

4 Experiments

4.1 Materials

We used Inkscape3 to randomly generate 3 labeled image datasets for 3 polygon shape
learning tasks respectively. For simplicity, the images are binary-colored, each image
contains one polygon. Target concepts of the 3 task are: 1) triangle/1, quadrilateral/1,
pentagon/1 and hexagon/1; 2) regular poly/1 (regular polgon); 3) right tri/1

(right triangle). Note that in the third task, we used the best hypothesis of triangle/1

3 http://inkscape.org



(a) Learning triangles, quadrilaterals,
etc.

(b) Learning regular polygons

(c) Learning right-angle triangles

Fig. 2. Datasets for 3 learning tasks

(a) (b) (c)

Fig. 3. Noise of polygon extraction: (a) is the ground truth image. (b) and (c) are two polygons
extracted by our algorithm, where (c) contains a redundant vertex.

Table 1. Result of learning simple geometrical shapes on single object datasets

VLFeat LogicalV isionPoly

Acc F1 Acc F1
triangle 0.91± 0.06 0.82± 0.09 1.00± 0.00 1.00± 0.00

quadrilateral 0.71± 0.08 0.41± 0.06 0.98± 0.03 0.96± 0.06

pentagon 0.79± 0.09 0.48± 0.24 1.00± 0.00 1.00± 0.00

hexagon 0.94± 0.04 0.85± 0.12 0.99± 0.03 0.97± 0.06

regular poly 0.60± 0.10 0.72± 0.06 1.00± 0.00 1.00± 0.00

right tri 0.75± 0.18 0.81± 0.11 1.00± 0.00 1.00± 0.00

learned in the first task as background knowledge. The datasets are presented in Fig. 2.
All datasets were partitioned into 5-folds respectively, 4 of them were used for training
and the remainder for testing. Thus each experiment was conducted 5 times.

4.2 Methods

LogicalVisionPoly: This is the proposed approach. In order to handle the noises in-
troduced by polygon extraction (e.g. Fig. 3), for each image we ran the extraction pro-
cedure five times independently to duplicate input instances. During evaluation, learned
hypotheses were tested on all the five extracted polygons and the final prediction was
based on an equal weighted vote.

VLFeat [10]: This is a popular statistical computer vision learning toolbox. The
feature used by VLFeat in our experiments is PHOW [2]. It is a dense SIFT descriptor
that has been widely used by current computer vision learning systems. Because the
sizes of datasets are small, we used an SVM learner for VLFeat.

4.3 Results

Table 1 shows the results of our experiments. Performance of compared methods are
measured by both predictive accuracy and F1-score. Clearly the performance of



LogicalV isionPoly is significantly better than VLFeat. Following is an example of a
learned hypothesis for the concept of regular polygon:

regular poly 1(A,G):-angles list(A,B),std dev bounded(B,G).

regular poly 0(A,A2):-polygon(A,B),regular poly 1(B,A2).

regular poly(A):-regular poly 0(A,0.02).

5 Conclusion

This paper studies a novel approach to the problem of visual concept learning, distinct
from that employed by traditional computer vision learning algorithms. By using the
proposed Logical Vision approach, we are able to extract logical facts of mid-level fea-
tures and learn high-level visual concepts from images constructively and symbolically.
The experimental results indicate that the proposed framework has potential to analyse
which are traditionally hard for more statistically-oriented approaches.

In future extensions of this work we hope to compare the approach empirically with
a broad set of state-of-the-art statistically-based vision algorithms. We also intend to
extend our study to images involving a multiplicity of overlapping colored polygons.
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