
Probabilistic Inductive Constraint Logic

Fabrizio Riguzzi1, Elena Bellodi2, Riccardo Zese2, Giuseppe Cota2, and
Evelina Lamma2

1 Dipartimento di Matematica e Informatica – University of Ferrara
Via Saragat 1, I-44122, Ferrara, Italy

2 Dipartimento di Ingegneria – University of Ferrara
Via Saragat 1, I-44122, Ferrara, Italy

[fabrizio.riguzzi,elena.bellodi,riccardo.zese,

giuseppe.cota,evelina.lamma]@unife.it

Abstract. Probabilistic logic models are used ever more often to deal
with the uncertain relations that are typical of the real world. However,
these models usually require expensive inference and learning procedures.
Very recently the problem of identifying tractable languages has come
to the fore. In this paper we consider the models used by the Inductive
Constraint Logic (ICL) system, namely sets of integrity constraints, and
propose a probabilistic version of them. A semantics in the style of the
distribution semantics is adopted, where each integrity constraint is an-
notated with a probability. These probabilistic constraint logic models
assign a probability of being positive to interpretations. This probability
can be computed in linear time in the number of ground instantiations of
the constraints. Parameter learning can be performed using an L-BFGS
procedure. We also propose the system PASCAL for “ProbAbiliStic in-
ductive ConstrAint Logic” that learns both the structure and the pa-
rameters of these models. PASCAL has been tested on a process mining
dataset giving promising results.

1 Introduction

Probabilistic logic models are gaining popularity due to their successful appli-
cation in a variety of fields, such as natural language processing, information
extraction, bioinformatics, semantic web, robotics and computer vision.

However, these models usually require expensive inference and learning pro-
cedures. Very recently the problem of identifying tractable languages has come
to the fore. Proposals such as Tractable Markov Logic [10], Tractable Probabilis-
tic Knowledge Bases [18, 15] and fragments of probabilistic logics [4, 14] strive
to achieve tractability by limiting the form of sentences.

In the ILP field, the learning from interpretation settings [9, 2] offers ad-
vantages in terms of tractability with respect to the learning from entailment
setting. First, learning first-order clausal theories is tractable [9] in the sense
that given fixed bounds on the maximal length of clauses and the maximal arity
of literals, such theories are polynomial-sample polynomial-time PAC-learnable.
Second, examples in learning from interpretations can be considered in isolation

[2], so coverage tests are local and learning algorithms take a time that is linear
in the number of examples.

A particularly interesting system that learns from interpretations is Inductive
Constraint Logic (ICL) [8]. It performs discriminative learning and it generates
models in the form of sets of integrity constraints.

Our aim is to consider a probabilistic version of the sets of integrity con-
straints with a semantics in the style of the distribution semantics [17]. Each
integrity constraint is annotated with a probability and a model assigns a prob-
ability of being positive to interpretations. This probability can be computed in
linear time given the number of groundings of the constraints. Parameter learn-
ing can be performed using an L-BFGS procedure. We also propose the system
PASCAL for ”ProbAbiliStic inductive ConstrAint Logic” that learns both the
structure and the parameters of these models. PASCAL has been tested on a
process mining dataset giving promising results.

The paper is organized as follows: Section 2 introduces integrity constraints
and ICL, Section 3 presents probabilistic constraints, Section 4 illustrates PAS-
CAL, Section 5 discusses related work, Section 6 describes the experiments per-
formed and Section 7 concludes the paper.

2 Inductive Constraint Logic

ICL [8] performs discriminative learning from interpretations. It learns logical
theories in the form of Constraint Logic Theories (CLTs).

A CLT T is a set of integrity constraints (ICs) C of the form

L1, . . . , Lb → A1; . . . ;Ah (1)

where the Lis are logical literals and the Aj are logical atoms. L1, . . . , Lb is
called the body of the IC and is indicated with Body(C). A1; . . . ;Ah is called
the head and is indicated with Head(C). The semicolon stands for disjunction,
so the head is a disjunction of atoms and the body is a conjunction of literals.

Together with a CLT T , we may be given a background knowledge B on the
domain which is a normal logic program.

CLTs can be used to classify Herbrand interpretations, i.e., sets of ground
facts. Given a Herbrand interpretation I (simply interpretation in the following)
and a background knowledge B, we use B to complete the information in I:
instead of simply considering I, we consider M(B ∪ I) where M indicates the
model according to the Prolog semantics (i.e. Clark completion [5]) and I is
interpreted as a set of ground facts. In this way, all the facts of I are true in
M(B ∪ I), moreover M(B ∪ I) can contain new facts derived from I using B.

Given an interpretation I, a background knowledge B and a CLT T we can
ask whether T is true in I given B, i.e., whether T covers I given B or, in other
words, whether I is a positive interpretation. Formally, an IC C is true in an
interpretation I given a background knowledge B, written M(B ∪ I) |= C, if,
for every substitution θ for which Body(C) is true in M(B ∪ I), there exists a
disjunct in Head(C) that is true in M(B ∪ I). If M(B ∪ I) |= C we say that

2

C satisfies the interpretation I given B; if M(B ∪ I) 6|= C we say that C does
not satisfy I. A CLT T is true in an interpretation I given B if every IC of T is
true in it and we write M(B ∪ I) |= T . We also say T satisfies I given B, that
T covers I given B or that I is positive given T and B.

In a range-restricted logical clause all the variables that appear in the head
also appear in the body. [6] showed that the truth of a range-restricted IC in an
interpretation I with range-restricted background knowledge B can be tested by
asking the goal

?−Body(C),¬Head(C).

against a Prolog database containing the atoms of I as facts together with the
rules of the normal program B. By ¬Head(C) we mean ¬A1, . . . ,¬Ah so the
query is

?− L1, . . . , Lb,¬A1, . . . ,¬Ah. (2)

If the query fails, C is true in I given B, otherwise C is false in I given B. If B
is range-restricted, every answer to an atomic query Q against B ∪ I completely
instantiates Q, i.e., it produces an element of M(B ∪ I). So the queries ¬Aj are
ground when they are called and no floundering occurs.

Example 1. The Bongard Problems were introduced by the Russian scientist M.
Bongard in his book [3]. Each problem consists of a number of pictures, some
positive and some negative. The goal is to discriminate between the two classes.

The pictures contain squares, triangles, circles, . . . with different properties,
such as small, large, pointing down, . . . and different relationships between them,
such as inside, above, . . . Figure 1 shows some of these pictures.

Each picture can be described by an interpretation. Consider the left picture.
It consists of a large triangle that includes a small square that, in turn, includes
a small triangle. This picture can be described using the interpretation

Il = {triangle(0), large(0), square(1), small(1), inside(1, 0),

triangle(2), inside(2, 1)}

Moreover, suppose you are given the background knowledge B:

0

1

2

0

1

2

3
4

5

0

1

2

3

4

5

6

Fig. 1. Bongard pictures.

3

in(A,B) ← inside(A,B).
in(A,D)← inside(A,C), in(C,D).

Thus M(B ∪ Il) will contain the atoms in(1, 0), in(2, 1) and in(2, 0). The IC

C1 = triangle(T), square(S), in(T, S)→ false

states that a figure satisfying the IC cannot contain a triangle inside a square.
C1 is false in Il given B because triangle 2 is inside square 1.

In the central picture instead C is true given B because the only triangle is
outside any square.

The learning from interpretations setting of ILP [9, 2] is the following.
Given

– a set I+ = {I1, . . . , IQ} of positive interpretations (positive examples)
– a set I− = {IQ+1, . . . , IR} of negative interpretations (negative examples)
– a normal logic program B (background knowledge)
– a hypothesis space H

Find: an hypothesis T ∈ H such that

– for all I+ ∈ I+, M(B ∪ I+) |= T
– for all I− ∈ I−, M(B ∪ I−) 6|= T

Thus we look for a CLT that discriminates the positive interpretations from the
negative interpretations.

ICL learning from interpretations uses a covering loop on the negative ex-
amples, an approach that is dual to the usual covering loop of top-down ILP
algorithms. ICL starts from an empty theory and adds one IC at a time. After
the addition of the IC, the set of negative examples that are ruled out by the
IC are removed from I− and the loop ends when no more ICs can be generated
or when I− becomes empty (all the negative examples are ruled out). ICL is
shown in Algorithm 1.

Algorithm 1 Function ICL

1: function ICL(I+, I−, B,H)
2: T ← ∅
3: repeat
4: C ← FindBestIC(I+, I−, B,H)
5: if C 6= ∅ then
6: T ← T ∪ {C}
7: Remove from I− all interpretations that are false for C
8: end if
9: until C = ∅ or I− is empty
10: return T
11: end function

The IC to be added in every iteration of the covering loop is returned by
the procedure FindBestIC. It uses a beam search with P (|C) as a heuristic

4

function, where P (|C) is the probability that an input example is negative
given that is ruled out by the IC C, i.e., the precision on negative examples.
The search starts from the IC true → false that rules out all the negative
examples but also all the positive examples and gradually refines that clause in
order to make it more general. The maximum size of the beam is a user-defined
parameter. The heuristic of each generated refinement is compared with the one
of the best IC found so far and, if its value is higher, the best IC is updated. At
the end of the refinement cycle, the best IC found so far is returned.

The refinement operator exploits θ-subsumption for defining a generality re-
lation among ICs: an IC C θ-subsumes an IC D, written C ≤θ D, if there exists a
substitution θ such that Cθ ⊆ D where C and D are seen as logical clauses (sets
of literals). The generality relation for ICs is defined in terms of θ-subsumption
as for learning from entailment but in the opposite direction: an IC D is more
general than an IC C (D ≤g C) if C ≤θ D. So true→ false is the most specific
constraint and the search in FindBestIC proceeds bottom up.

Refinements are obtained by using a refinement operator that adds a literal
to the body or head of the IC or applies a substitution.

3 Probabilistic Inductive Constraint Logic

A Probabilistic Constraint Logic Theory (PCLT) is a set of probabilistic integrity
constraints (PICs) of the form

pi :: L1, . . . , Lb → A1; . . . ;Ah (3)

Each constraint Ci is associated with a probability pi ∈ [0, 1] and a PCLT T is
a set {(C1, p1), . . . , (Cn, pn)}. A PCLT T defines a probability distribution on
ground constraint logic theories called worlds in this way: for each grounding
of each IC, we include the IC in a world with probability pi and we assume
all groundings to be independent. The notion of world as a theory is similar to
notion of world in ProbLog [7] where a world is a normal logic program. Let us
assume that constraint Ci has ni groundings called Ci1, . . . , Cini

. Let us call the
ICs Cij instantiations of Ci. Thus, the probability of a world w is given by the
product:

P (w) =

n∏
i=1

∏
Cij∈w

pi
∏

Cij 6∈w

(1− pi).

P (w) so defined is a probability distribution over the set of worlds W . The prob-
ability P (⊕|w, I) of the positive class given an interpretation I, a background
knowledge B and a world w is defined as the probability that w satisfies I and
is given by P (⊕|w, I) = 1 if M(B ∪ I) |= w and 0 otherwise. The probability
P (⊕|I) of the positive class given an interpretation I and a background B is
the probability of a PCLT T satisfying I. From now on we always assume B as
given and we do not mention it again. P (⊕|I) is given by

P (⊕|I) =
∑
w∈W

P (⊕, w|I) =
∑
w∈W

P (⊕|w, I)P (w|I) =
∑

w∈W,M(B∪I)|=w

P (w) (4)

5

The probability P (|I) of the negative class given an interpretation I is the
probability of I not satisfying T and is given by 1− P (⊕|I).

Computing P (⊕|I) with Formula (4) would be impractical as there is an
exponential number of worlds. We can associate a Boolean random variable Xij

to each instantiated constraint Cij with the meaning that Xij = 1 in a world
if Cij is included in the world. So P (Xij) = pi and P (Xij) = 1 − pi. Let X
be the set of the Xij variables. These variables are all mutually independent.
A valuation ν is an assignment of a truth value to all variables in X. There is
clearly a one to one correspondence between worlds and valuations. A valuation
can be represented as a set containing Xij or Xij for each Xij .

Suppose a ground IC Cij is violated in I. The worlds where Xij holds in
the respective valuation are thus excluded from the summation in Formula (4).
We must keep only the worlds where Xij holds in the respective valuation for
all ground constraints Cij violated in I. So I satisfies all the worlds where the
formula

φ =

n∧
i=1

∧
M(B∪I)6|=Cij

Xij

is true in the respective valuations, so

P (⊕|I) = P (φ) =

n∏
i=1

(1− pi)mi (5)

where mi is the number of instantiations of Ci that are not satisfied in I, since
the random variables are all mutually independent. So P (⊕|I) can be computed
in a time that is linear in the number of ground constraints.

Example 2 (Example 1 continued). Consider the PCLT

{C1 = 0.5 :: triangle(T), square(S), in(T, S)→ false}

In the left picture of Figure 1 the body of C1 is true for the single substitution
T/2 and S/1 thus m1 = 1 and P (⊕|Il) = 0.5. In the right picture of Figure
1 the body of C1 is true for three couples (triangle, square) thus m1 = 3 and
P (⊕|Ir) = 0.125.

4 Learning Probabilistic Constraint Logic Theories

Let us consider first the parameter learning problem that can be expressed as
follows.
Given

– a PCLT theory T
– a set I+ = {I1, . . . , IQ} of positive interpretations
– a set I− = {IQ+1, . . . , IR} of negative interpretations
– a normal logic program B (background knowledge)

6

Find: the parameters of T such that the likelihood

L =

Q∏
q=1

P (⊕|Iq)
R∏

r=Q+1

P (|Ir)

is maximized. The likelihood can be unfolded to

L =

Q∏
q=1

n∏
l=1

(1− pl)mlq

R∏
r=Q+1

(
1−

n∏
l=1

(1− pl)mlr

)
(6)

where miq (mir) is the number of instantiations of Ci that are false in Iq (Ir)
and n is the number of ICs. Let us compute the derivative of the likelihood with
respect to the parameter pi. We first aggregate the positive examples

L =

n∏
l=1

(1− pl)ml+

R∏
r=Q+1

(
1−

n∏
l=1

(1− pl)mlr

)
(7)

where ml+ =
∑Q
q=1mlq. Then the partial derivative with respect to pi is

∂L

∂pi

=

∂
∏n

l=1
(1 − pl)

ml+

∂pi

R∏
r=Q+1

(
1 −

n∏
l=1

(1 − pl)
mlr

)
(8)

+

n∏
l=1

(1 − pl)
ml+

∂
∏R

r=Q+1

(
1 −
∏n

l=1
(1 − pl)

mlr

)
∂pi

(9)

= −mi+(1 − pi)
mi+−1

n∏
l=1,l 6=i

(1 − pl)
ml+

R∏
r=Q+1

(
1 −

n∏
l=1

(1 − pl)
mlr

)
(10)

+

n∏
l=1

(1 − pl)
ml+

R∑
r=Q+1

mir(1 − pi)
mir−1

n∏
l=1,l 6=i

(1 − pl)
mlr (11)

·

R∏
r′=Q+1,r′ 6=r

(
1 −

n∏
l=1

(1 − pl)
m

lr′

)
(12)

= −mi+(1 − pi)
mi+−1

n∏
l=1,l6=i

(1 − pl)
ml+

(1 − pi)
mi+

(1 − pi)
mi+

R∏
r=Q+1

(
1 −

n∏
l=1

(1 − pl)
mlr

)
(13)

+

n∏
l=1

(1 − pl)
ml+

R∑
r=Q+1

mir

∏n

l=1
(1 − pl)

mlr

1 − pi

R∏
r′=Q+1,r′ 6=r

(
1 −

n∏
l=1

(1 − pl)
m

lr′

)
(14)

·
1 −
∏n

l=1
(1 − pl)

mlr

1 −
∏n

l=1
(1 − pl)

mlr
(15)

= −
mi+(1 − pi)

mi+−1
L

(1 − pi)
mi

+

R∑
r=Q+1

mir

∏n

l=1
(1 − pl)

mlrL

(1 − pi)(1 −
∏n

l=1
(1 − pl)

mlr)
(16)

= −
mi+L

1 − pi

+

R∑
r=Q+1

mir

∏n

l=1
(1 − pl)

mlrL

(1 − pi)(1 −
∏n

l=1
(1 − pl)

mlr)
(17)

7

=
L

1 − pi

(
R∑

r=Q+1

mir

∏n

l=1
(1 − pl)

mlr

1 −
∏n

l=1
(1 − pl)

mlr
−mi+

)
(18)

=
L

1 − pi

(
R∑

r=Q+1

mir
P (⊕|Ir)

P (|Ir)
−mi+

)
(19)

The equation ∂L
∂pi

= 0 does not admit a closed form solution so we must use
optimization to find the maximum of L.

We can optimize the likelihood with Limited-memory BFGS (L-BFGS) [16],
an optimization algorithm in the family of quasi-Newton methods that approx-
imates the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm using a lim-
ited amount of computer memory. L-BFGS requires the computation of L and
of its derivative at various points. These are given by equations (7) and (19).
As can be seen from these equations, computing these quantities is linear in the
number of examples.

Secondly, the structure learning problem can be expressed as
Given

– a set I+ = {I1, . . . , IQ} of positive interpretations
– a set I− = {IQ+1, . . . , IR} of negative interpretations
– a normal logic program B (background knowledge)

Find: a PCLT T such that the likelihood

L =

Q∏
q=1

P (⊕|Iq)
R∏

r=Q+1

P (|Ir)

is maximized.
This problem can be solved by first identifying good candidate clauses and

then searching for a theory guided by the LL of the data. Candidate clauses are
found by building an initial beam of top clauses - generated similarly to Progol’s
bottom clauses [13] according to a user-defined language bias - and by refining
them through revision operators in a beam search. For a user-defined number
NS of times, two interpretations are selected, one positive and one negative, for
building the bottom clauses, so the initial beam will contain 2NS clauses. We
first generate candidate clauses instead of using directly a covering loop because
coverage is probabilistic, so the probability of negative interpretations of being
excluded may increase as more ICs are false in the interpretations. To score the
revisions, we can learn the clauses’ parameter by function LearnParams and
use the resulting log likelihood (LL′′) as the heuristic. This function takes as
input a theory, the examples and the background knowledge and returns the
theory with updated parameters. The scored refinements are inserted back into
the beam in order of heuristic. If the beam exceeds a maximum predefined size,
the last element is removed.

Refinements in line 9 are found using a revision operator that adds a literal
from the top clause to the clause under refinement. The top clause is the most

8

general clause in the language bias and is obtained by saturation from the atoms
in an interpretation, ensuring that the input/output modes of the atoms specified
by the language bias are respected, similarly to [13]. Refinements as well must
respect the input-output modes of the bias declarations, must be connected (i.e.,
each body literal must share a variable with the head or a previous body literal)
and the total number of clause literals must not exceed a user-defined number
ML.

The output of this search phase is represented by a list CC of candidate
clauses sorted on decreasing LL.

The second phase is a greedy search in the space of theories starting with
an empty theory T . Then one clause Cl at a time is added from the CC list.
After each addition, parameter learning is run on the new theory T ′ and the log
likelihood LL′ of the data is computed as the score of T ′. If LL′ is better than
the current best, the clause is kept in the theory, otherwise it is discarded. The
PASCAL system that implements this strategy is shown in Algorithm 2.

Algorithm 2 Function PASCAL

1: function PASCAL(I+, I−, B, T,H,NS ,ML,BeamSize,MaxSteps)
2: CC = []
3: Steps = 1
4: Beam ←InitialBeam(NS) . generation of Bottom Clauses
5: repeat
6: NewBeam = []
7: while Beam is not empty do . Clause search
8: Remove the first couple ((Cl,TopCl),LL) from Beam
9: Find all refinements Ref of Cl with at most ML literals
10: for all (Cl′,TopCl′) ∈ Ref do

11: ({Cl′′},LL′′)←LearnParams({Cl′}, I+, I−, B)
12: NewBeam ←Insert((Cl′′,TopCl′), LL′′,NewBeam)
13: if size(NewBeam) > BeamSize then
14: Remove the last element of NewBeam
15: end if
16: CC ←Insert((Cl′′,LL′′), CC)
17: end for
18: end while
19: Beam ← NewBeam
20: Steps = Steps + 1
21: until Steps > MaxSteps
22: T ← ∅, LL← −∞ . Theory search
23: repeat
24: Remove the first couple (Cl,ClLL) from CC

25: (T ′,LL′)←LearnParams(T ∪ {Cl}, I+, I−, B)
26: if LL′ > LL then
27: T ← T ′, LL← LL′

28: end if
29: until CC is empty
30: return T
31: end function

5 Related Work

The approach here presented is very similar in spirit to the distribution semantics
[17]: a probabilistic theory defines a distribution over non-probabilistic theories

9

by assuming independence among the choices in probabilistic constructs. The
distribution semantics has emerged as one of the most successful approaches in
Probabilistic Logic Programming (PLP) and underlies many languages such as
Probabilistic Horn Abduction, Independent Choice Logic, PRISM, Logic Pro-
grams with Annotated Disjunctions and ProbLog.

In the distribution semantics, the aim is to compute the probability that a
ground atom is true. However, performing such inference requires an expensive
procedure that is usually based on knowledge compilation. For example, ProbLog
[7] builds a Boolean formula and compiles it into a Binary Decision Diagram from
which the computation of the probability is linear in the size of the diagram.
However, the compilation procedure is #P in the number of variables. On the
contrary, computing the probability of the positive class given an interpretation
in a PCLT is linear in the number of variables.

This places PCLTs in the recent line of research devoted to identifying
tractable probabilistic languages. PCLTs exploit the research done in the ILP
subfield of learning from interpretations for achieving tractability.

The assumption of independence of the constraints may seem strong. Of
course, not assuming independence may result in a finer modeling of the do-
main. However, this would preclude the nice computational properties of PCLTs.
Achieving tractability requires approximations and we think that the indepen-
dence of the constraints is a reasonable assumption, similar to the independence
of probabilistic choices in the distribution semantics for PLP.

Each constraint may have a different number of violated groundings, which
may result in a larger weight associated with constraints with many ground-
ings. However, the parameters are learned from data in order to maximize the
likelihood, so the parameters are adjusted to take into account the number of
groundings.

A system related to PASCAL is 1BC [11] that induces first-order features in
the form of conjunctions of literals and combines them using naive Bayes in order
to classify examples. First-order features are similar to integrity constraints with
an empty head: they check the existence of values for the variables that satisfy
the conjunction. The probability of a feature is computed by relative frequency
in 1BC. This can lead to suboptimal results if compared to PASCAL, where the
probabilities are optimized to maximize the likelihood.

6 Experiments

PASCAL has been implemented in SWI-Prolog [19] and has been applied to
the process mining dataset considered in [1]. For performing L-BFGS we ported
the YAP-LBFGS library developed by Bernd Gutmann to SWI-Prolog. This
library is based on libLBFGS. PASCAL is compared to the DPML system [12]
for performing process mining with ILP. DPML implements a learning algorithm
very similar to ICL (Algorithm 1).

The dataset collects the careers of students enrolled at the Faculty of Engi-
neering of the University of Ferrara from 2004 to 2009. Each career records the

10

main events such as all the chronological enrollments, the exams taken and the
conclusion of the career (degree or not). The dataset records 776 interpretations
each corresponding to a different student career. The careers of students who
graduated are positive interpretations while those who did not finish their stud-
ies are negative interpretations. In particular, it contains 304 positive and 472
negative interpretations. All experiments have been performed on GNU/Linux
machines with an Intel Xeon Haswell E5-2630 v3 (2.40GHz) CPU and 128 GB
RAM.

PASCAL offers the following parameters: the size BeamSize of the beam,
the maximum number of literals ML per clause refinement, the maximum num-
ber NS of iterations for building the bottom clauses, the maximum number
MaxSteps of clause search iterations. They have been set as BeamSize=100,
ML=10, NS=4, MaxSteps=50 respectively. DPML offers the following parame-
ters: the maximum number of literals in the head and in the body of a rule (set
to 8); the minimal accuracy for each rule (set to 0.75); the beam size (set to
10), and the number of clause refinement iterations (set to 50). Five-fold cross
validation has been applied, with each fold containing 60 or 61 positive and 94
or 95 negative examples.

From the probability estimates on the test examples we computed the av-
erage accuracy and the Area Under the Precision Recall curve and ROC curve
(AUCPR and AUCROC respectively). Accuracy is computed as the average of
the greatest accuracies over the folds. Since the theories returned by DPML
are sharp, in order to compute their AUCPR and AUCROC we annotated each
learned clause with probability 1.0 and applied the same testing technique as
PASCAL. Table 1 reports the log-likelihood over the test set, the accuracy, the
AUCPR, AUCROC and learning time averaged over the folds for both systems.
These results show that a probabilistic approach at learning constraint models
may produce better results than a sharp approach realized by a purely logical
system.

Table 1. Results of the experiments in terms of log-likelihood over the test set, Area
Under the PR and ROC Curves, accuracy and learning time (in seconds) averaged over
the folds.

System LL AUCROC AUCPR Accuracy Time(s)

PASCAL -302.664 0.923 0.851 0.889 568.509

DPML -440.254 0.707 0.53 0.656 280.594

7 Conclusions

We have proposed a probabilistic extension of sets of integrity constraints to-
gether with the PASCAL algorithm for learning them. PASCAL exploits L-BFGS

11

for tuning the parameters and constraint refinement for searching for good struc-
tures. Preliminary experiments on a process mining dataset show that the ap-
proach can overcome a probabilistic process mining system.

References

1. Bellodi, E., Riguzzi, F., Lamma, E.: Probabilistic declarative process mining. In:
Bi, Y., Williams, M.A. (eds.) KSEM 2010. LNCS, vol. 6291, pp. 292–303. Springer,
Heidelberg (2010)

2. Blockeel, H., De Raedt, L., Jacobs, N., Demoen, B.: Scaling up inductive logic
programming by learning from interpretations. Data Min. Knowl. Discov. 3(1),
59–93 (1999)

3. Bongard, M.M.: Pattern Recognition. Hayden Book Co., Spartan Books (1970)
4. Van den Broeck, G.: On the completeness of first-order knowledge compilation for

lifted probabilistic inference. In: NIPS 2011. pp. 1386–1394 (2011)
5. Clark, K.L.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and

Databases. Plenum Press, New York, USA (1978)
6. De Raedt, L., Dehaspe, L.: Clausal discovery. Mach. Learn. 26(2-3), 99–146 (1997)
7. De Raedt, L., Kimmig, A., Toivonen, H.: ProbLog: A probabilistic Prolog and its

application in link discovery. In: IJCAI 2007. vol. 7, pp. 2462–2467. AAAI Press
(2007)

8. De Raedt, L., Van Laer, W.: Inductive constraint logic. In: ALT 1995. LNAI, vol.
997, pp. 80–94. Springer, Heidelberg (1995)

9. De Raedt, L., Dzeroski, S.: First-order jk-clausal theories are pac-learnable. Artif.
Intell. 70(1-2), 375–392 (1994)

10. Domingos, P., Webb, W.A.: A tractable first-order probabilistic logic. In: AAAI
2012. AAAI Press (2012)

11. Flach, P.A., Lachiche, N.: Naive bayesian classification of structured data. Mach.
Learn. 57(3), 233–269 (2004)

12. Lamma, E., Mello, P., Riguzzi, F., Storari, S.: Applying inductive logic program-
ming to process mining. In: ILP 2008. pp. 132–146. No. 4894 in LNAI, Springer
(2008)

13. Muggleton, S.: Inverse entailment and Progol. New Generation Computing 13,
245–286 (1995)

14. Niepert, M., Van den Broeck, G.: Tractability through exchangeability: A new per-
spective on efficient probabilistic inference. In: AAAI 2014. pp. 2467–2475 (2014)

15. Niepert, M., Domingos, P.: Tractable probabilistic knowledge bases: Wikipedia and
beyond. In: Workshop on Statistical Relational Artificial Intelligence. vol. WS-14-
13. AAAI (2014)

16. Nocedal, J.: Updating quasi-newton matrices with limited storage. Math. Comput.
35(151), 773–782 (1980)

17. Sato, T.: A statistical learning method for logic programs with distribution seman-
tics. In: ICLP 1995. pp. 715–729. MIT Press (1995)

18. Webb, W.A., Domingos, P.: Tractable probabilistic knowledge bases with existence
uncertainty. In: Workshop on Statistical Relational Artificial Intelligence (2013)

19. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-Prolog. Theor. Pract.
Log. Prog. 12(1-2), 67–96 (2012)

12

