
CARAF: Complex Aggregates within Random
Forests

Clément Charnay1, Nicolas Lachiche1, and Agnès Braud1

ICube, Université de Strasbourg, CNRS
300 Bd Sébastien Brant - CS 10413, F-67412 Illkirch Cedex
{charnay,nicolas.lachiche,agnes.braud}@unistra.fr

Abstract. This paper presents an approach integrating complex aggre-
gate features into a relational random forest learner to address relational
data mining tasks. CARAF, for Complex Aggregates within RAndom
Forests, has two goals. Firstly, it aims at avoiding exhaustive exploration
of the large feature space induced by the use of complex aggregates. Its
second purpose is to reduce the overfitting introduced by the expressivity
of complex aggregates in the context of a single decision tree. CARAF
compares well on real-world datasets to both random forests based on
the propositionalization method RELAGGS, and the relational random
forest learner FORF.

1 Introduction and Context

Relational data mining, as opposed to attribute-value learning, refers to learn-
ing from data represented across several tables. These tables represent different
objects, linked by relationships. Many datasets from many domains fall into the
relational paradigm, leading to a much richer representation. The applications
go from the molecular domain, to geographical data, and any kind of spatio-
temporal data such as speech recognition.

The difference to attribute-value learning is the one-to-many relationship. In
particular, we focus on a two-table setting: one table, the main table, represents
the objects we want to learn on. The second table, referred to as the secondary
table, contains objects related to the main ones in a one-to-many relationship,
which means several secondary objects are linked to one main object. In prac-
tice, many datasets are represented in this two-table setting: sequential data is
represented as a main table containing information on the sequence, while the
secondary table contains the elements of the sequence. The multi-dimensional
setting is another use case, where one is often interested in learning on one di-
mension based on the contents of the table of facts, which are linked through a
one-to-many relationship.

As an example, the relational schema for the Auslan dataset, an Australian
sign language recognition task, is given in Figure 1. The main table, associated
to records, contains only the attribute to learn, i.e. the language sign associated
to the record, while the secondary table contains the records for all 22 channels
monitored, and the timestamp attribute.

2 Clément Charnay, Nicolas Lachiche, Agnès Braud

record id sign

1 alive
2 all
3 answer

.

element id record id time chan1 . . . chan22

1 1 1 1 -0.1 . . . 0.09
1 2 1 2 -0.08 . . . 0
1 3 1 3 -0.06 . . . 1
.
2 1 2 1 0.02 . . . 1
2 2 2 2 0.02 . . . 0.9
.

0..N
1

Main table - records

Secondary table - elements

Fig. 1. Schema of the real-world Auslan dataset

Most relational data mining algorithms are based on inductive logic program-
ming concepts, and handle the relationships through the use of the existential
quantifier: it introduces a secondary object B linked to the main object A, B
usually meets a certain condition and its existence is relevant to classify A. For
instance, on the Auslan dataset, to discriminate between signs, a feature like
the fact that an element of the record has a value higher than 0.9 for channel
13 could be useful. TILDE [2] is a relational extension of Quinlan’s C4.5 [10]
decision tree learner based on this idea. Other approaches use aggregates: they
take all B objects linked to A, and aggregate the set to one value, for instance by
computing the average of a numerical property of the B objects. For instance,
the average value of channel 9 over the whole record may help discriminate be-
tween signs. The propositionalization approach RELAGGS [8] introduces such
aggregates.

One approach combines both, by filtering the B objects on a condition before
aggregating them. This approach is known as complex aggregation. As opposed
to simple aggregation, it consists in aggregating a subset of the B objects linked
to A, the subset being defined by a conjunction of conditions over the attributes
of the secondary table. For instance, a feature that may be useful to classify signs
could be the average value of channel 9 over record elements between timestamps
15 and 22. TILDE has been extended to handle complex aggregates [12], although
it is not able to introduce more than one condition on the secondary objects to
be aggregated. The RRHCCA algorithm [4] handles complex aggregates by a
stochastic, random-restart based, hill-climbing search in the feature space.

However, the complex aggregates introduce two specific challenges: firstly,
the introduction of a condition prior to the aggregation increases exponentially
the size of the search space, which makes an exhaustive exploration intractable.
Secondly, the complex aggregates, being a very rich representation, are also
very specific and strict, which implies they are prone to overfitting. Especially,
complex aggregate-based algorithms consider also the simple aggregates that
RELAGGS builds. Therefore, if the performance of a decision tree built on top
of simple-aggregate features is better than the performance of a decision tree

CARAF: Complex Aggregates within Random Forests 3

based on complex aggregates, it means the complex aggregates have been found
to be better than simple aggregates on the training set, but this is not confirmed
on test data. In other words, if complex aggregates do not perform better than
RELAGGS, it means they overfit.

In this paper, we propose extending the decision tree learner based on RRHCCA
to a random forest learner, introducing two faster hill-climbing algorithms. The
implementation has a SQL-based version, which constitutes a first step towards
handling bigger datasets.

The rest of the paper is organized as follows: in Section 2 we briefly define
the concept of complex aggregates. In Section 3, we review the use of random
forests in the relational setting. In Section 4, we introduce CARAF (Complex
Aggregates with RAndom Forests), a new relational random forest learner im-
plementing our contributions. In Section 5, we present experimental results ob-
tained with CARAF. Finally, in Section 6, we conclude and give some future
work perspectives.

2 Complex Aggregates

In this section, we briefly define the concept of complex aggregates, which has
been thoroughly explained in [4].

In a setting with two tables linked through a one-to-many relationship, let us
denote the main table by M and the secondary table by S. We define a complex
aggregate feature of table M as a triple (Selection, Feature, Function) where:

– Selection selects the objects to aggregate. It is a conjunction of s conditions,
i.e. Selection =

∧
1≤i≤s

ci, where ci is a condition on a descriptive attribute of

the secondary table. Formally, let S.A be the set of descriptive attributes of
table S, and Attr ∈ S.A, then ci is:

• either Attr ∈ vals with vals a subset of the possible values of Attr if
Attr is a categorical feature,

• or Attr ∈ [val1; val2[if Attr is a numerical feature.

In other words, for a given object of the main table, the objects of the
secondary table that meet the conditions in Selection are selected for aggre-
gation.

– Feature can be:

• nothing,

• a descriptive attribute of the secondary table, i.e. Feature ∈ S.A.

Thus, Feature is the attribute of the selected objects that will be aggregated.
It can be nothing since the selected objects can simply be counted, in which
case a feature to aggregate is not needed.

– Function is the aggregation function to apply to the bag of feature values for
the selected objects. In this work we will consider six aggregation functions:
count, min, max, sum, mean and standard deviation.

4 Clément Charnay, Nicolas Lachiche, Agnès Braud

In the rest of the paper, we will denote a complex aggregate by Func-
tion(Feature, Selection). We will refer to the set of possible (Function, Feature)
pairs as the aggregation processes, i.e. the different possibilities to aggregate a
set of secondary objects.

The introduction of a condition on the objects to aggregate makes the feature
space impossible to explore exhaustively. Heuristics have been proposed to ex-
plore this space in a smart way. The refinement cube [12] is based on the idea of
the monotonicity of the dimensions of the cube. Indeed, the aggregation condi-
tion, aggregation function and threshold can be explored in a general-to-specific
way, using monotone paths: when a complex aggregate (a point in the refinement
cube) is too specific (i.e. it fails for every training example), the search does not
restart from this point.

The RRHCCA algorithm [4] has been proposed to explore a larger search
space with a random-restart hill-climbing approach to find the appropriate con-
dition with respect to the aggregation process, still in the context of a decision
tree learner. However, the decision tree model with complex aggregates often fails
to outperform RELAGGS, which shows overfitting. As a solution, we propose
its extension to a Random Forest model.

3 Random Forests

Random Forest [3] is an ensemble classification technique which builds a set
of diverse decision trees and combines their predictions into a single output.
Diversity between the trees is achieved by two means:

– Bagging: each tree is built on a different training set using sampling with
replacement from the original training set.

– To build each node of each tree, a subset of features is used. If there are
numFeatures available,

√
numFeatures has been found a good size for

feature subsampling.

The use of Random Forests for relational data mining purposes is not new:
TILDE decision trees have been used as a basis for FORF (First-Order Relational
Random Forests) [11], which can, as TILDE, be used with complex aggregates.
However, the implementation suffers memory limitations, e.g. allocation failures
when the feature space induced by the language bias is too wide. Also, the logic
programming formalism makes the case of empty sets ambiguous. Indeed, the
failure of a comparison test on an aggregate can have two reasons: the comparison
can actually fail or the aggregate predicate can fail because it cannot compute
a result, generally because the set to aggregate is empty. In the implementation
of CARAF, we overcome this limitation by considering aggregation failure as a
third outcome of a test.

Another relational Random Forest algorithm is described in [1]. It uses ran-
dom rules based on the existential quantifier. However, it does not consider
aggregates and the current implementation is limited to binary classification
problems, which is inappropriate for most of the datasets we consider.

CARAF: Complex Aggregates within Random Forests 5

4 CARAF: Complex Aggregates with RAndom Forests

In this section, we describe the main contributions brought by CARAF (Complex
Aggregates with RAndom Forests).

First is the use of random forests. The instance bagging part is performed
the same way as Breiman does, by sampling with replacement from the training
set. The feature sampling is different, based on the complex aggregates space
structure. Let us denote by AggProc = |(Function, Feature)| the number of
aggregation processes, Ns the number of secondary objects, and A the number
of attributes in the secondary table. The number of conjunctions of conditions,
i.e. the number of possible Selection grows like NA

s for numeric attributes. A
good estimation for the number of complex aggregates is then ComplAgg =
AggProc · NA

s . As a subsampling method, we want to keep a search space of
size
√
ComplAgg. We then keep

√
AggProc aggregation processes and, in each

process, A/2 attributes to put conditions on. This gives us the desired feature
subsampling.

The RRHCCA algorithm aims at exploring the complex aggregates search
space in a stochastic way. It uses random restart hill-climbing to find the best
conjunction of conditions Selection for given aggregation process (Function, Feature).
The hill-climbing process used to search this space can be RRHCCA, but we
chose to simplify it to make it less time-consuming. We propose two approaches
to achieve that. The aim of the first approach is the same as in RRHCCA, i.e.
finding a suitable conjunction of conditions for a given aggregation process. We
only use one process of hill-climbing, starting from an empty condition, which
chooses one random move at each step from the same set of local moves as
RRHCCA: by adding a random condition, removing one, or slightly modifying
one. This approach is denoted by “Random”. The difference is that RRHCCA
tries every local move, while “Random” tries only one at random. We do that for
each aggregation process and keep the best aggregate found over all aggregation
processes. Pseudo-code for RRHCCA is recalled in Algorithm 1 and Algorithm
2. New pseudo-code for the “Random” approach is given in Algorithm 3 and
Algorithm 4.

The second hill-climbing approach is based on loop inversion: instead of look-
ing for the best condition for each aggregation process, we look for the best global
condition. This is done by starting from an empty condition, and testing every
aggregation process with this condition. The condition is then locally modified,
still in the same way as in “Random”, and all aggregation processes are tested
with it, until no improvement is found. In this case, we keep the condition and
the aggregation process that led to the best score with it. This approach is de-
noted by “Global” and pseudo-code is given in Algorithm 5. Algorithm 6 shows
a useful function for enumerating local neighborhood of a conjunction of condi-
tions. This hill-climbing algorithm has been designed for its efficiency in a SQL
context. Indeed, we implemented CARAF to be compatible with SQL databases,
with which it is more efficient to compute all aggregates for a given condition
than all aggregates with different conditions on each one. This use of SQL tech-

6 Clément Charnay, Nicolas Lachiche, Agnès Braud

nology allows CARAF to consider bigger datasets since it removes the need to
store all data in memory.

Algorithm 1 Random Restart Hill-Climbing Algorithm (RRHCCA)

1: Input: functions: list of aggregation functions, features: list of attributes of the
secondary table, train: labelled training set

2: Output: split : best complex aggregate found through hill-climbing

3: wheel ← InitializeBranches(functions, features)
4: bestSplits ← []
5: bestScore ← WORST SCORE FOR METRIC
6: for i = 1 to MAX ITERATIONS and wheel contains at least one branch do
7: branch ← ChooseBranchToGrow(wheel)
8: hasImproved ← branch.Grow(train)
9: if not hasImproved then

10: if branch.split.score ≥ bestScore then
11: if branch.split.score > bestScore then
12: bestScore ← branch.split.score
13: bestSplits ← []
14: end if
15: bestSplits.Add(branch.split)
16: end if
17: branch.Reinitialize();
18: end if
19: end for
20: split ← PickOneAtRandom(bestSplits)
21: return split

An additional feature is the use of ternary decision trees instead of binary
decision trees. Each internal node of the tree has three sub-branches: one for
success of the test, one for actual failure, and one for the unapplicability of the
test, e.g. if the value of the feature involved in the test cannot be computed for
the instance at hand. This is a way of dealing with empty sets in the context
of complex aggregates. Indeed, imposing conditions on the secondary objects to
aggregate can result in the absence of objects to be aggregated, i.e. aggregating
an empty set. This is a problem for most aggregation functions, e.g. the average.
We chose to tackle this issue by considering this as a third possible outcome of
the test.

5 Experimental Results

In this section, we compare CARAF using the 3 different hill-climbing approaches
to RELAGGS used in combination with Random Forest in Weka [7], and to
FORF. All random forests were run to build 33 trees. We consider seven real-
world real datasets.

CARAF: Complex Aggregates within Random Forests 7

Algorithm 2 Branch.Grow: Hill-Climbing Algorithm for One Branch

1: Input: train: labelled training set
2: Output: hasImproved : boolean indicating if the step of the hill-climbing has im-

proved the best split found in the current hill-climbing of the branch

3: hasImproved ← false
4: allNeighbors ← EnumerateAggregateNeighbors(this.aggregate)
5: for all neighbor ∈ allNeighbors do
6: aggregateToTry ← CreateAggregate(this.aggregate.function,

this.aggregate.feature, neighbor)
7: spl ← EvaluateAggregate(aggregateToTry, train)
8: hasImproved ← hasImproved or UpdateBestSplit(spl)
9: end for

10: return hasImproved

Algorithm 3 Random Hill-Climbing Algorithm

1: Input: functions: list of aggregation functions, features: list of attributes of the
secondary table, train: labelled training set

2: Output: split : best complex aggregate found through hill-climbing

3: wheel ← InitializeBranches(functions, features)
4: bestSplits ← []
5: bestScore ← WORST SCORE FOR METRIC
6: for all aggProc ∈ wheel do
7: iterWithoutImprovement ← 0
8: for i = 1 to MAX ITERATIONS and iterWithoutImprovement <

0.2*MAX ITERATIONS do
9: hasImproved ← branch.GrowRandom(train)

10: if not hasImproved then
11: iterWithoutImprovement++
12: if branch.split.score ≥ bestScore then
13: if branch.split.score > bestScore then
14: bestScore ← branch.split.score
15: bestSplits ← []
16: end if
17: bestSplits.Add(branch.split)
18: end if
19: else
20: iterWithoutImprovement ← 0
21: end if
22: end for
23: end for
24: split ← bestSplits.oneRandomElement()
25: return split

8 Clément Charnay, Nicolas Lachiche, Agnès Braud

Algorithm 4 Branch.GrowRandom: Hill-Climbing Algorithm for One Branch

1: Input: train: labelled training set
2: Output: hasImproved : boolean indicating if the step of the hill-climbing has im-

proved the best split found in the current hill-climbing of the branch

3: allNeighbors ← EnumerateNeighbors(this.aggregate.condition)
4: neighbor ← allNeighbors.oneRandomElement()
5: aggregateToTry ← CreateAggregate(this.aggregate.function,

this.aggregate.feature, neighbor)
6: spl ← EvaluateAggregate(aggregateToTry, train)
7: hasImproved ← UpdateBestSplit(spl)
8: return hasImproved

Algorithm 5 Global Hill-Climbing Algorithm

1: Input: functions: list of aggregation functions, features: list of attributes of the
secondary table, train: labelled training set

2: Output: split : best complex aggregate found through hill-climbing

3: aggregationProcesses ← InitializeProcesses(functions, features)
4: bestSplits ← []
5: bestScore ← WORST SCORE FOR METRIC
6: conjunction ← InitEmptyConjunction()
7: iterWithoutImprovement ← 0
8: for i = 1 to MAX ITERATIONS and iterWithoutImprovement <

0.2*MAX ITERATIONS do
9: allNeighbors ← EnumerateNeighbors(conjunction)

10: neighbor ← allNeighbors.oneRandomElement()
11: hasImproved ← false
12: for all aggProc ∈ aggregationProcesses do
13: aggregateToTry ← CreateAggregate(aggProc.function, aggProc.feature,

neighbor)
14: spl ← EvaluateAggregate(aggregateToTry, train)
15: if spl.score ≥ bestScore then
16: if spl.score > bestScore then
17: bestScore ← spl.score
18: bestSplits ← []
19: hasImproved ← true
20: end if
21: bestSplits.Add(spl)
22: end if
23: end for
24: if hasImproved then
25: iterWithoutImprovement ← 0
26: else
27: iterWithoutImprovement++
28: end if
29: end for
30: split ← bestSplits.oneRandomElement()
31: return split

CARAF: Complex Aggregates within Random Forests 9

Algorithm 6 EnumerateNeighbors

1: Input: conjunction: aggregation conjunction of conditions
2: Output: allNeighbors: array of aggregation conjunctions, neighbors of conjunction

3: allNeighbors ← []
4: for all attr ∈ secondary attributes not present in conjunction do
5: nextConjunction ← conjunction obtained by adding one randomly initialized

condition on attr to conjunction
6: allNeighbors.Add(nextConjunction)
7: end for
8: for all attr ∈ secondary attributes already present in conjunction do
9: nextConjunction← condition obtained by removing the condition on attr present

in conjunction
10: allNeighbors.Add(nextConjunction)
11: end for
12: for all attr ∈ secondary attributes already present in conjunction do
13: for all move ∈ possible moves on the condition on attr present in conjunction

do
14: nextConjunction ← aggregate obtained by applying move to conjunction
15: allNeighbors.Add(nextConjunction)
16: end for
17: end for
18: return allNeighbors

– Auslan is a task of recognition of the Australian language sign.
– Diterpenes [6]
– Japanese vowels is related to recognition of Japanese vowels utterances from

cepstrum analysis.
– Musk1 and Musk2 [5] are molecule classification tasks.
– Opt-digits deals with optical recognition of handwritten digits.
– Urban blocks [9] is a geographical classification task. This dataset is a clean

version of the one used in [4] in the sense that duplicate urban blocks were
removed.

A description of the datasets is given in Table 1.
The accuracy results are reported in Table 2. It is test set accuracy when a

test set is available for the dataset or out-of-bag accuracy on the training set
when there is no test set. The figures in bold indicate that the difference with
RELAGGS is statistically significant with 95% confidence, while the underlined
figures indicate a significant difference with FORF. The run of FORF on the
Auslan dataset resulted in an unknown error and cannot be reported.

We observe that CARAF with the original RRHCCA hill-climbing algorithm
is always performing better than both RELAGGS and FORF, the difference be-
ing significant in 3 cases out of 7 over RELAGGS, and 4 out of 6 over FORF.
The Random and Global hill-climbing approaches also perform better than RE-
LAGGS and FORF in a majority of cases, some cases also being statistically
significant. These two approaches, considering less complex aggregates, also have

10 Clément Charnay, Nicolas Lachiche, Agnès Braud

Table 1. Characteristics of the datasets used in the experimental comparison.

Dataset Instances Classes

Auslan 2565 96
Diterpenes 1503 23

Japanese vowels 270+370 9
Musk1 92 2
Musk2 102 2

Opt-digits 3823+1797 10
Urban blocks 591 6

Table 2. Results of CARAF with different hill-climbing heuristics on different datasets
(out-of-bag accuracy or test set accuracy)

Dataset RELAGGS FORF RRHCCA Random Global

Auslan 94.19% ERR 96.53% 95.91% 94.66%
Diterpenes 89.09% 90.49% 92.95% 85.06% 93.35%

Japanese vowels 93.78% 94.86% 95.41% 97.30% 97.03%
Musk1 80.43% 78.26% 89.13% 84.78% 80.43%
Musk2 76.47% 75.49% 81.37% 85.29% 82.35%

Opt-digits 22.37% 76.57% 95.94% 94.60% 92.77%
Urban blocks 83.42% 75.81% 84.94% 83.76% 84.60%

7 (3) - 6 (4) 6 (3) - 5 (2) 6.5 (3) - 6 (3)

the advantage of speed over RRHCCA. As shown in Table 3, the runtimes of
both Random and Global are lower by a factor at least 4 than the runtimes of
RRHCCA, Global being faster than Random. The loss in accuracy performance
is tiny: RRHCCA outperforms Random 5 times, the difference being statistically
significant only once. RRHCCA outperforms Global 4 times, significantly twice.
The Random and Global approaches are then good performers too. Therefore,
our recommendation is, if runtime is not a problem for the dataset at hand, to
use RRHCCA. If time is critical, then Random is the best option, followed by
Global.

Table 3. Runtime of the algorithms (in minutes)

Dataset RRHCCA Random Global

Auslan 921 250 146
Diterpenes 4 1 1

Japanese vowels 13 1 1
Musk1 98 8 5
Musk2 733 71 55

Opt-digits 35 9 5
Urban blocks 4 1 1

CARAF: Complex Aggregates within Random Forests 11

6 Conclusion and Future Work

In this paper, we presented CARAF, a relational random forest learner based on
complex aggregates. The hill-climbing algorithms to explore the search space per-
form better than RELAGGS with Random Forests and FORF on most datasets.
The basic random hill-climbing algorithms to explore the complex aggregates
search space yield a considerable speed up while not suffering performance loss.

Future work will consist in exploring database technologies that are suitable
for learning from relational data. Indeed, most relational algorithms have not
been designed to handle big data, and there is an increasing trend towards rele-
vant representation of relational data and the technologies, potentially NoSQL-
based, fitted for relational data mining.

References

1. Anderson, G., Pfahringer, B.: Relational random forests based on random relational
rules. In: Boutilier, C. (ed.) IJCAI 2009, Proceedings of the 21st International Joint
Conference on Artificial Intelligence, Pasadena, California, USA, July 11-17, 2009.
pp. 986–991 (2009), http://ijcai.org/papers09/Papers/IJCAI09-167.pdf

2. Blockeel, H., Raedt, L.D.: Top-down induction of first-order logical decision trees.
Artif. Intell. 101(1-2), 285–297 (1998)

3. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001), http://dx.
doi.org/10.1023/A:1010933404324

4. Charnay, C., Lachiche, N., Braud, A.: Construction of complex aggregates with
random restart hill-climbing. In: 24th International Conference on Inductive Logic
Programming (ILP’14) (2014)

5. Dietterich, T.G., Lathrop, R.H., Lozano-Pérez, T.: Solving the multiple instance
problem with axis-parallel rectangles. Artif. Intell. 89(1-2), 31–71 (1997), http:

//dx.doi.org/10.1016/S0004-3702(96)00034-3
6. Dzeroski, S., Schulze-Kremer, S., Heidtke, K.R., Siems, K., Wettschereck, D.,

Blockeel, H.: Diterpene structure elucidation from 13cnmr spectra with induc-
tive logic programming. Applied Artificial Intelligence 12(5), 363–383 (1998),
http://dx.doi.org/10.1080/088395198117686

7. Hall, M.A., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.:
The WEKA data mining software: an update. SIGKDD Explorations 11(1), 10–18
(2009), http://doi.acm.org/10.1145/1656274.1656278

8. Krogel, M.A., Wrobel, S.: Facets of aggregation approaches to propositionalization.
In: Horvath, T., Yamamoto, A. (eds.) Work-in-Progress Track at the Thirteenth
International Conference on Inductive Logic Programming (ILP) (2003)

9. Puissant, A., Lachiche, N., Skupinski, G., Braud, A., Perret, J., Mas, A.: Clas-
sification et évolution des tissus urbains à partir de données vectorielles. Revue
Internationale de Géomatique 21(4), 513–532 (2011)

10. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)
11. Van Assche, A., Vens, C., Blockeel, H., Dzeroski, S.: First order random forests:

Learning relational classifiers with complex aggregates. Machine Learning 64(1-3),
149–182 (2006)

12. Vens, C., Ramon, J., Blockeel, H.: Refining aggregate conditions in relational learn-
ing. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD. Lecture Notes
in Computer Science, vol. 4213, pp. 383–394. Springer (2006)

http://ijcai.org/papers09/Papers/IJCAI09-167.pdf
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1016/S0004-3702(96)00034-3
http://dx.doi.org/10.1016/S0004-3702(96)00034-3
http://dx.doi.org/10.1080/088395198117686
http://doi.acm.org/10.1145/1656274.1656278

	CARAF: Complex Aggregates within Random Forests

