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Abstract. Sakama and Inoue introduced brave induction as a novel
logic framework for concept-learning. They showed that brave induction
has potential applications for problem solving in many domains. In this
paper, motivated from Shapiro’s definition of model inference problems,
we provide an optimization of brave induction called proper brave in-
duction, which prefers hypotheses resulting fewer minimal models. We
first propose formal definitions of proper brave induction for clausal the-
ories and nonmonotonic logic programs, then investigate corresponding
properties and develop an optimization procedure. At last, we analyze
computational complexity of decision problems for proper brave induc-
tion in propositional case.
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1 Introduction

The problem of concept-learning [8] is to construct a general description of a class
of objects given a set of examples and non-examples using background knowl-
edge. There are many different logical frameworks for concept-learning, including
explanatory induction [5] or learning from entailment [3] which is considered as
a normal setting in inductive logic programming (ILP) [9], learning from satis-
fiability (LFS) [3], and learning from interpretations (LFI) [3]. Besides, Sakama
and Inoue [14] introduced a novel logic framework for concept-learning called
brave induction, which allows more hypotheses than explanatory induction and
fewer hypotheses than LFS. They showed that brave induction has potential ap-
plications for problem solving in systems biology, requirement engineering, and
multiagent negotiation.

Example 1. There are 1 teacher and 30 students in a class, of which 20 are
European, 7 are Asian, and 3 are American. The situation is represented by
background knowledge B and the observation O:

B : teacher(0), student(1), . . . , student(30),

O : euro(1), . . . , euro(20), asia(21), . . . , asia(27), usa(28), . . . , usa(30),

where each number represents a teacher or an individual student. Here are some
hypotheses:
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H1 : euro(X) ∨ asia(X) ∨ usa(X)← student(X),

H2 : euro(X) ∨ asia(X) ∨ usa(X) ∨ teacher(X),

H3 : euro(X) ∨ asia(X) ∨ usa(X) ∨ teacher(X)← student(X).

All of them are allowed by brave induction, while H1 appears a good hypothesis.

Shapiro [15] discussed logical foundations of inductive learning and defined
model inference problems. The intuition behind the definition is that, the “world”
is governed by some model M of the language and the inductive learning process
is to gather information and correct hypotheses in order to converge to theories
that could capture the model M .

Motivated from this intuition, we would prefer hypotheses allowed by brave
induction with fewer “uncertainties” to capture the “world” model. In specific,
we introduce an optimization of brave induction called proper brave induction,
which allows a hypothesis that is allowed by brave induction and there does not
exist another such hypothesis whose set of minimal models or answer sets is
a proper subset of its. In Example 1, H1 is allowed by proper brave induction
while H2 and H3 are not. In the paper, we provide formal definitions of proper
brave induction for clausal theories and nonmonotonic logic programs, then in-
vestigate corresponding properties and develop an optimization procedure. At
last, we analyze computational complexity of decision problems for proper brave
induction in propositional case.

2 Preliminaries

In this paper, we assume a function-free first-order language L with finite sets
of constant symbols and predicate symbols, and a countable set of variables. A
term is either a variable or a constant. A ground term is a constant. An atom is
an expression p(t1, . . . , tn), where p is a predicate symbol with arity n ≥ 1 and
t1, . . . , tn are terms. A literal is an atom or the negation of an atom. A formula
is a propositional combination of atoms. A ground atom (resp. ground formula)
is an atom (resp. formula) that contains no variables.

The Herbrand universe of L is the set of constants and the Herbrand base of L
is the set of ground atoms. A ground instance of an expression (atom, formula,
etc.) is obtained by uniformly instantiating the variables in it with ground terms
in the Herbrand universe.

An interpretation I is defined as a subset of the Herbrand base of L. I satisfies
a ground formula F , if I entails F in the sense of classical logic. Moreover, I
satisfies a (non-ground) formula F , written I |= F , if I satisfies every ground
instance of F . I satisfies a set T of formulas, written I |= T , if I satisfies every
formula in T . Given sets T1 and T2 of formulas, T1 entails T2, written T1 |= T2,
if every interpretation I satisfies T1 implies I satisfies T2.

In the following, we recall the basic notions about clausal theories with the
minimal model semantics, answer set programming [1], and brave induction [14].
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2.1 Clausal Theories and the Minimal Model Semantics

A clausal theory is a finite set of clauses of the form:

A1 ∨ · · · ∨Am ∨ ¬Am+1 ∨ · · · ∨ ¬An, (1)

where n ≥ m ≥ 0 and A1, . . . , An are atoms. If m ≤ 1, it is a Horn clause; if
m = n, it is a positive clause; if A1, . . . , An are ground atoms, it is a ground
clause. A Horn clausal theory is a finite set of Horn clauses and a ground clausal
theory is a finite set of ground clauses.

An interpretation I satisfies a ground clause of form (1) if {Am+1, . . . , An} ⊆
I implies {A1, . . . , Am} ∩ I 6= ∅. A clause with variables is considered as a
shorthand for the set of its ground instantiations. In specific, an interpretation I
satisfies a (non-ground) clause if I satisfies every ground instance of it. An
interpretation I is a model of a clausal theory T if I satisfies every clause in
T . A model I of a clausal theory T is minimal if there does not exist another
model I ′ of T such that I ′ is a proper subset of I. We use MM(T ) to denote the
set of minimal models of a clausal theory T . A clausal theory T is consistent if
MM(T ) 6= ∅; otherwise, T is inconsistent.

2.2 Answer Set Programming

Answer set programming (ASP) is one of the most popular rule-based nonmono-
tonic formalisms [1]. An ASP program (or simply a program, DLP) is a finite set
of (disjunctive) rules of the form:

A1 ∨ · · · ∨Ak ← Ak+1, . . . , Am, notAm+1, . . . , notAn, (2)

where n ≥ m ≥ k ≥ 0, n ≥ 1 and A1, . . . , An are atoms. If k ≤ 1, it is a normal
rule; if m = n, it is a positive rule. A normal logic program (NLP) is a finite set
of normal rules and a positive program is a finite set of positive rules.

We will also write rule r of form (2) as

head(r)← body(r),

where head(r) is A1 ∨ · · · ∨ Ak, body(r) = body+(r) ∧ body−(r), body+(r) is
Ak+1 ∧ · · · ∧ Am, and body−(r) is ¬Am+1 ∧ · · · ∧ ¬An. With a slight abuse of
notion, we identify head(r), body+(r), body−(r) with their corresponding sets of
atoms. We can omit ← if body(r) is empty.

An interpretation S satisfies a ground rule r if body+(r) ⊆ S and body−(r)∩
S = ∅ implies head(r) ∩ S 6= ∅. Similar to clausal theories, a program with
variables is considered as a shorthand for the set of its ground instantiations.
In specific, an interpretation S satisfies a (non-ground) rule if S satisfies every
ground instance of it. An interpretation S is a model a program P if S satisfies
every rule in P , in this case, P is satisfiable. A model S of a program P is
minimal if there does not exist another model S′ of P such that S′ ⊂ S. We also
use MM(P ) to denote the set of minimal models of a program P .

Given an ASP program P and an interpretation S, the Gelfond-Lifschitz
reduct of P on S, written PS , is obtained from P by deleting:
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– each rule that has a formula not p in its body with p ∈ S,
– all formulas of the form not p in the bodies of the remaining rules.

Then PS is a positive program. An interpretation S is an answer set of P if
S ∈ MM(PS). In the following, we use AS(P ) to denote the set of answer sets
of a program P . P is consistent if there exists an answer set of P ; otherwise,
P is inconsistent. P AS-entails a formula F (resp. a set T of formulas), written
P |=AS F (resp. P |=AS T ), if for every S ∈ AS(P ), S |= F (resp. S |= T ).

Notice that, given a clausal theory T , a positive program P can be obtained
from T by replacing each clause of form (1) with the positive rule of the form:

A1 ∨ · · · ∨Am ← Am+1, . . . , An

and MM(T ) = AS(P ). In the following, we identify a clausal theory T with the
corresponding positive program P and a minimal model of T with the corre-
sponding answer set of P .

2.3 Brave Induction

A typical induction task is to construct hypotheses to explain an observation
using background knowledge. In specific, one is given a triple 〈Lb, Lo, Lh〉, where
Lb is the language of background knowledge, Lo is the language of observations,
and Lh is the language of hypotheses. Here we identify a language with the set
of sentences allowed in the language and require that Lb, Lo, Lh are subsets of
sentences of L. Given an observation O in Lo and background knowledge B in
Lb, a formalization of concept-learning is to define a cover-relation from O and
B to a hypothesis H in Lh.

Sakama and Inoue [14] proposed a framework of concept-learning called brave
induction based on the triple 〈LCT , LCT , LCT 〉, where LCT denotes the set of
clausal theories in L, and extended the notion to the triple 〈LASP , LGA, LASP 〉1,
where LASP denotes the set of ASP programs and LGA denotes the set of ground
atoms in L. Different from existing frameworks, brave induction allows more
hypotheses than explanatory induction and fewer hypotheses than LFS. It has
been shown that brave induction has potential applications for problem solving
in many domains. We recall the basic notions of brave induction here.

Definition 1 (Brave induction). Let B be background knowledge and O an
observation. A hypothesis H covers O under B in brave induction if

– B ∪H has a minimal model satisfying O, given the triple 〈LCT , LCT , LCT 〉;
– B∪H has an answer set S such that O ⊆ S, given the triple 〈LASP , LGA, LASP 〉.

In this case, H is called a solution of brave induction.

Besides brave induction, there are other frameworks for concept-learning,
including explanatory induction [5], LFS [3], and cautious induction [14].
1 In [14], classical negation is allowed in ASP programs and the language of observa-

tions is the set of ground literals. However, from [1], an ASP program with classical
negation can be equivalently translated to one without classical negation. Without
loss of generality, we only consider ASP programs without classical negation here.
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Definition 2. Let B be background knowledge and O an observation.
– A hypothesis H covers O under B in explanatory induction if
• B ∪H is consistent and B ∪H |= O, given the triple 〈LCT , LCT , LCT 〉.

– A hypothesis H covers O under B in LFS if
• B ∪H has a model satisfying O, given the triple 〈LCT , LCT , LCT 〉.

– A hypothesis H covers O under B in cautious induction if
• B∪H is consistent and every minimal model of B∪H satisfies O, given

the triple 〈LCT , LCT , LCT 〉;
• B ∪H is consistent and O ⊆ S for every answer set S of B ∪H, given

the triple 〈LASP , LGA, LASP 〉.
H is called a solution of explanatory induction, LFS, or cautious induction.

Following propositions summarize the relations between these frameworks.

Proposition 1 (Proposition 2.1 and 6.1 in [14]). Given the triple 〈LCT , LCT , LCT 〉,
let B be background knowledge and O an observation.
– If H is a solution of explanatory induction, then H is a solution of cautious

induction. The converse implication holds when O is a set of positive clauses.
– If H is a solution of cautious induction, then H is a solution of brave induc-

tion. The converse implication holds when B ∪H is a Horn clausal theory.
– If H is a solution of brave induction, then H is a solution of LFS.

Proposition 2 (Proposition 3.4 in [14]). Given the triple 〈LASP , LGA, LASP 〉,
let B be background knowledge and O an observation.
– If H is a solution of cautious induction, then H is a solution of brave induc-

tion. The converse implication holds when B ∪H is a positive NLP.

[14] provided computational complexity results of brave induction.

Proposition 3 (Theorem 4.1 and 4.3 in [14]). Let B be background knowl-
edge and O an observation, the following complexity results hold:
– Deciding whether O has a solution of brave or cautious induction under B

is NP-complete, given the triple 〈LCT , LCT , LCT 〉 or 〈LASP , LGA, LASP 〉.
– Deciding whether a given hypothesis is a solution of brave induction is ΣP

2 -
complete, given the triple 〈LCT , LCT , LCT 〉 or 〈LASP , LGA, LASP 〉.

– Deciding whether a given hypothesis is a solution of cautious induction is
coNP-complete, given the triple 〈LCT , LCT , LCT 〉.

– Deciding whether a given hypothesis is a solution of cautious induction is
ΠP

2 -complete, given the triple 〈LASP , LGA, LASP 〉.

3 Motivations

An inductive learning problem often assumes that the “world” is governed by
some model M of the language and the learning process is to gather informa-
tion and correct hypotheses in order to converge to theories that could capture
the model M . In this section, we address the problem of brave induction from
the perspective of the assumption, which motivates our optimization of brave
induction proposed in the next section.

Following Shapiro’s [15] definition of model inference problems, we define
problems of explanatory induction, LFS, brave induction, and cautious induc-
tion. Given a triple 〈Lb, Lo, Lh〉 and an interpretation M as the model of the
“world”, we use LM

o to denote the set of observational sentences satisfied by M .
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Definition 3. Given a triple 〈Lo, Lb, Lh〉, an interpretation M of L, and back-
ground knowledge B ⊆ Lb satisfied by M ,

– the explanatory induction problem is to find a hypothesis T ⊆ Lh such that
M satisfies T and T ∪B |= LM

o ;
– the LFS problem is to find a hypothesis T ⊆ Lh such that M satisfies T and

there exists a model S of T ∪B with S |= LM
o ;

– the brave induction problem is to find a hypothesis T ⊆ Lh such that M
satisfies T and there exists an answer set S of T ∪B with S |= LM

o ;
– the cautious induction problem is to find a hypothesis T ⊆ Lh such that M

satisfies T , T ∪B is consistent, and T ∪B |=AS L
M
o .

In this case, T is respectively called an observation complete axiomatization of
the explanatory induction, LFS, brave induction, or cautious induction problem.

Notice that, if the set of ground literals, denoted by LGL, is subset of Lo, then the
condition “M satisfies T” has been implied and can be omitted in the definition.

We can extend the definition of brave and cautious induction given the triple
〈LASP , LGL, LASP 〉.
Definition 4. Given the triple 〈LASP , LGL, LASP 〉, let B be background knowl-
edge and O an observation.

– A hypothesis H covers O under B in brave induction if B∪H has an answer
set satisfying O.

– A hypothesis H covers O under B in cautious induction if B∪H is consistent
and every answer set of B ∪H satisfies O.

Recall that, the language L is function-free and contains finite sets of con-
stants and predicates, then both LGL and interpretations are finite.

Proposition 4. Let M be an interpretation of L, background knowledge B sat-
isfied by M , and an observation O = {l | l ∈ LGL ∩ Lo and M |= l} where Lo is
the language of observation.

– Given the triple 〈LCT , LCT , LCT 〉, a hypothesis H is an observation com-
plete axiomatization of the explanatory induction, LFS, brave induction, or
cautious induction problem if and only if H is a solution of explanatory
induction, LFS, brave induction, or cautious induction respectively.

– Given the triple 〈LASP , LGA, LASP 〉, a hypothesis H is an observation com-
plete axiomatization of the brave induction or cautious induction problem
implies H is a solution of brave or cautious induction respectively, but not
vice versa in general.

– Given the triple 〈LASP , LGL, LASP 〉, a hypothesis H is an observation com-
plete axiomatization of the brave induction or cautious induction problem if
and only if H is a solution of brave or cautious induction respectively.

Example 2. Consider Example 1, the “world” model M implies that the sets of
European, Asian, and American are pairwise disjoint. Given the triple 〈LASP , LGA, LASP 〉
and the observation O ∪B, the hypothesis {euro(X), asia(X), usa(X)} is a so-
lution of brave and cautious induction, but it is not an observation complete
axiomatization of the brave or cautious induction problem.
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If LGL ⊆ Lo and LGL ⊆ Lh, then the set {l | l ∈ LGL and M |= l} is
an observation complete axiomatization of explanatory induction, LFS, brave
induction, and cautious induction problems. However, the set is not a good solu-
tion for many concept-learning problems. Normally, Lh has a set of restrictions,
i.e., language bias [9], which specifies the space of acceptable hypotheses. For
example, some set of constants may not be allowed to appear in Lh. To sim-
plify the discussion, we consider the set of clausal theories with no appearance
of any constants, denoted by LCTV , and the set of ASP programs without any
constants, denoted by LASPV , as examples of restricted language of hypotheses.

Given the triple 〈LCT , LCT , LCTV 〉 or 〈LASP , LGL, LASPV 〉, solutions of ex-
planatory induction, LFS, brave induction, and cautious induction are defined
the same for the triple 〈LCT , LCT , LCT 〉 or 〈LASP , LGL, LASP 〉 respectively.

Example 3. Consider Example 1, given the triple 〈LCT , LCT , LCTV 〉, we could
not find out a hypothesis that covers O under B in explanatory induction and
cautious induction. On the other hand, hypotheses H1, H2, H3, and

H4 : euro(X) ∨ student(X),

H5 : ¬asia(X) ∨ ¬usa(X)

are solutions of LFS. H1, H2, and H3 are solutions of brave induction.

Although the hypothesis space of brave induction is smaller than the space
of LFS, candidate solutions of brave induction also need to be optimized. For
instance, we would prefer H1 to H2 and H3, as AS(B ∪H1) ⊂ AS(B ∪H2) and
AS(B ∪ H1) ⊂ AS(B ∪ H3). The intuition is that, a solution of brave induc-
tion is intended to capture the “world” model with background knowledge, and
solutions with fewer “uncertainties” are preferred. Following the intuition, we
specify our optimization of brave induction in the next section.

4 Proper Brave Induction

Motivated from previous discussions, we introduce two frameworks of induction.

Definition 5 (Proper brave and cautious induction). Given the triple
〈LCT , LCT , LCTV 〉 or 〈LASP , LGL, LASPV 〉, let B be background knowledge and
O an observation.

– A hypothesis H covers O under B in proper brave induction if
• H covers O under B in brave induction, and
• there does not exist another such hypothesis H ′ such that AS(H ′ ∪B) ⊂
AS(H ∪B).

– A hypothesis H covers O under B in proper cautious induction if
• H covers O under B in cautious induction, and
• there does not exist another such hypothesis H ′ such that AS(H ′ ∪B) ⊂
AS(H ∪B).

H is called a solution of proper brave or cautious induction respectively .

Example 4. Consider Example 3, H1, H2 and H3 are solutions of brave induction
and only H1 is a solution of proper brave induction.

Relations to brave and cautious induction are as follows.
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Proposition 5. Given the triple 〈LCT , LCT , LCTV 〉 or 〈LASP , LGL, LASPV 〉, let
B be background knowledge and O an observation.

– If H is a solution of proper cautious induction, then H is a solution of proper
brave induction.

– If H is a solution of proper cautious induction, then H is a solution of
cautious induction.

– If H is a solution of proper brave induction, then H is a solution of brave
induction.

When B∪H has only one answer set, the converse implication holds respectively.

Proper brave (resp. cautious) induction has a solution if and only if brave
(resp. cautious) induction has a solution. The conditions for the existence of
solutions for triples 〈LCT , LCT , LCT 〉 and 〈LASP , LGA, LASP 〉 have been discussed
in [14]. We extend the results here.

Proposition 6 (Necessary conditions for the existence of solutions).
Let B be background knowledge and O an observation.

– Given the triple 〈LCT , LCT , LCTV 〉, proper brave induction (resp. brave in-
duction, proper cautious induction, cautious induction) has a solution, only
if B ∪O is consistent.

– Given the triple 〈LASP , LGL, LASPV 〉, proper brave induction (resp. brave in-
duction, proper cautious induction, cautious induction) has a solution, only
if B ∪O is satisfiable.

Given the triple 〈LCT , LCT , LCTV 〉, B ∪ O is consistent is not a sufficient
condition for the existence of solutions. For example, given B = ∅ and O =
{p(a),¬p(b)}, MM(B∪O) 6= ∅. However, proper brave induction (resp. brave in-
duction, proper cautious induction, cautious induction) does not have a solution.
Given the triple 〈LASP , LGL, LASPV 〉, B ∪O is consistent is not a necessary con-
dition for the existence of solutions. For example, given B = {p(a)← not p(a)}
and O = {q(a)}, AS(B ∪ O) = ∅. However, H = {p(X), q(X)} is a solution of
proper brave induction.

Corollary 1 (Necessary condition of solutions). Given the triple 〈LCT , LCT , LCTV 〉
or 〈LASP , LGL, LASPV 〉, let B be background knowledge and O an observation. H
is a solution of proper brave induction (resp. brave induction, proper cautious
induction, cautious induction), only if B ∪H ∪O is consistent.

Now we provide some properties of proper brave and cautious induction.
Given two clausal theories T1 and T2, we denote T1 ∨ T2 to be a clausal theory
that is logically equivalent to the formula

∧
C∈T1

C ∨
∧

C∈T2
C.

Proposition 7. Given the triple 〈LCT , LCT , LCTV 〉 or 〈LASP , LGL, LASPV 〉, both
H1 and H2 are solutions of proper brave or cautious induction does not imply
that H1 ∪H2 is a solution of proper brave or cautious induction.

Example 5. Let B = {q(a) ∨ r(a),¬q(a) ∨ ¬r(a)} and O = {p(a)}. Both H1 =
{q(X), p(X) ∨ ¬q(X)} and H2 = {r(X), p(X) ∨ ¬r(X)} cover O under B in
proper brave and cautious induction, but H1 ∪H2 does not.
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Proposition 8. Given the triple 〈LCT , LCT , LCTV 〉, both H1 and H2 are solu-
tions of proper brave or cautious induction does not imply that H1 ∨ H2 is a
solution of proper brave or cautious induction.

Note that, the result is different from Proposition 2.5 in [14] for brave and
cautious induction. Though H1∨H2 is a solution of brave induction, it is possible
that MM(H1) ⊂MM(H1 ∨H2). Example 5 is such an example.

Proposition 9. Given the triple 〈LCT , LCT , LCTV 〉 or 〈LASP , LGL, LASPV 〉, H
covers both O1 and O2 under B in proper cautious induction implies that H
covers O1 ∪ O2 under B in proper cautious induction. But this is not the case
for proper brave induction.

Example 6. Let B = {p(X) ∨ q(X)}, O1 = {p(a)}, and O2 = {q(a)}. Then
H = ∅ covers both O1 and O2 under B in proper brave induction, but H does
not cover O1 ∪O2 under B.

Proposition 10. Given the triple 〈LCT , LCT , LCTV 〉 or 〈LASP , LGL, LASPV 〉, H
covers O under both B1 and B2 in proper brave or cautious induction does not
imply that H covers O under B1 ∪B2 in proper brave or cautious induction.

Example 7. Let B1 = {p(a)}, B2 = {¬p(a)}, O = {f(a)}. H = {f(X)} covers
O under both B1 and B2 in proper brave and cautious induction, but H does
not cover O under B1 ∪B2.

Sakama and Inoue [14] provided algorithms to compute solutions of brave
induction for triples 〈LCT , LCT , LCT 〉 and 〈LASP , LGA, LASP 〉. From previous dis-
cussions, the idea of proper brave induction can be used to optimize the solutions
of brave induction. One such optimization procedure is as follows:

1. for each rule r in the hypothesis H and each atom A ∈ head(r), let r′ =
head(r) \ {A} ← body(r);

2. if (H \ {r})∪ {r′} is still a solution of brave induction, then replace r by r′.

Proposition 11. Given the triple 〈LCT , LCT , LCTV 〉 or 〈LASP , LGL, LASPV 〉, let
B be background knowledge, O an observation, H a solution of brave induc-
tion, and H ′ a hypothesis obtained from H by the above optimization procedure.
AS(H ′ ∪B) ⊆ AS(H ∪B).

Proof. S is an answer set of H ′ ∪ B implies that S is a model of H ∪ B. If S
is not an answer set of H ∪ B, then there exists a model S′ of (H ∪ B)S such
that S′ ⊂ S. However, S′ is still a model of (H ′ ∪ B)S , which conflicts to the
condition that S is an answer of H ′ ∪B.

In Example 1, H1 can be obtained from H3 by the optimization procedure.

5 Computational Complexity

In this section, we consider computational complexity of proper brave induction.
The classes ΣP

K, ΠP
k , ∆P

k of the Polynomial Hierarchy [11] are defined as follows:

∆P
0 = ΣP

0 = ΠP
0 = P and for all k ≥ 1, ∆P

k = PΣP
k−1 , ΣP

k = NPΣP
k−1 , ΠP

k = co-ΣP
k .
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The class DP
k is defined as the class of problems that consist of the conjunction

of two independent problems from ΣP
k and ΠP

k . In particular, NP = ΣP
1 , co-NP =

ΠP
1 , and DP = DP

1 . For all k ≥ 1,

ΣP
k ⊆ DP

k ⊆ ∆P
k+1 ⊆ ΣP

k+1 ⊆ PSPACE.

First, we provide some computational complexity results about clausal the-
ories and ASP programs. Notice that, we view a program with variables as a
shorthand of its ground instantiations. We only consider ground clausal theories
and ground ASP programs in this section.

Lemma 1. Let H1 and H2 be (ground) clausal theories or DLPs.

– Deciding whether AS(H1) ⊆ AS(H2) is ΠP
2 -complete.

– Deciding whether AS(H1) = AS(H2) is ΠP
2 -complete.

– Deciding whether AS(H1) ⊂ AS(H2) is DP
2 -complete.

Proof. (1) The complement of the problem is in ΣP
2 , as we can guess a set S

such that S ∈ AS(H1) and S /∈ AS(H2) and the problem of deciding whether
S ∈ AS(H1) is co-NP-complete [4]. The hardness can be proved by reducing the
problem of deciding whetherAS(H1) = ∅ to whetherAS(H1) ⊆ AS({p← not p}).
Note that, deciding whether AS(H1) = ∅ is ΠP

2 -complete [4].
(2) can be proved in the same manner.
(3) The problem is equivalent to deciding whether AS(H1) ⊆ AS(H2) and

AS(H1) 6= AS(H2), so it is in DP
2 . The hardness can be proved by reducing the

problem of deciding whether the conjunction ∃X∀Y E ∧ ∀X′∃Y ′E′ is satisfi-
able to whether AS(H1) ⊂ AS(H2), where H2 has an answer set iff ∃X∀Y E is
satisfiable and H1 has an answer set iff ∀X′∃Y ′E′ is satisfiable.

Similar to the proof for Lemma 1, we have the following lemma.

Lemma 2. Let H1 and H2 be (ground) NLPs.

– Deciding whether AS(H1) ⊆ AS(H2) is co-NP-complete.
– Deciding whether AS(H1) = AS(H2) is co-NP-complete.
– Deciding whether AS(H1) ⊂ AS(H2) is DP-complete.

Now we provide computational complexity results of proper brave induction.
We use LNLP and LNLPV to denote the set of NLPs and the set of NLPs without
any constants.

Theorem 1. The following computational complexity results hold:

– Given the triple 〈LNLP , LGL, LNLPV 〉,
• deciding whether a given hypothesis is a solution of brave induction is

NP-complete;
• deciding the existence of solutions in brave induction or proper brave

induction is in ΣP
2 and NP-hard;

• deciding whether a given hypothesis is a solution of proper brave induc-
tion is in ΠP

2 and co-NP-hard.
– Given the triple 〈LCT , LCT , LCTV 〉 or 〈LASP , LGL, LASPV 〉,
• deciding whether a given hypothesis is a solution of brave induction is

ΣP
2 -complete;
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• deciding the existence of solutions in brave induction or proper brave
induction is in ΣP

3 and ΣP
2 -hard;

• deciding whether a given hypothesis is a solution of proper brave induc-
tion is in ΠP

3 and ΠP
2 -hard.

Proof. (1) The problem is equivalent to checking whether a set O of ground
literals is satisfied by some answer set of an NLP H ∪ B, which is known to be
NP-complete.

(2) The problem is in ΣP
2 , as we can guess a hypothesis H such that H is

a solution of brave induction, which can be verified in polynomial time by an
NP oracle. The NP-hardness can be proved by reducing the problem of deciding
whether a ground NLP P has an answer set to whether there exists a hypothesis
covers an observation O under background knowledge B, where B is obtained
from P by replacing each occurrence of a ground atom A in P by an atom fA(cA)
and adding rules fA(c′A) ← and ← fA(c′′A) for each ground atom A in P , and
O = {f(c)} such that both f and c do not appear in B. It is easy to verify that,
there exists a hypothesis (i.e., {f(X)}) covers O under B iff P has an answer set.
Note that, deciding whether a ground NLP has an answer set is NP-complete.

(3) The complement of the problem is in ΣP
2 , as we can guess another solution

H ′ of brave induction such that AS(H ′∪B) ⊂ AS(H ∪B), which can be verified
in polynomial time by an NP oracle. The co-NP-hardness can be proved from
the fact that H covers an observation O under background knowledge B in brave
induction iff H ′ does not cover O under B∪B′ in proper brave induction, where
H ′ is obtained from H by adding not f(X) in body(r) of each r ∈ H and adding
f ′(X) ← not f(X) and f(X) ← not f ′(X) with new symbols f and f ′, and
B′ = {A← f(X) | A ∈ O} ∪ {← A, f(X) | ¬A ∈ O}.

(4) can be proved in the same manner of the proof for Proposition 3.
(5) and (6) can be proved in the same manner for (2) and (3) respectively.

6 Related Work

In previous sections, we provided an optimization of brave induction called
proper brave induction and compared it with brave induction in Proposition 5.
From the discussion in [14], a solution of explanatory induction is always a so-
lution of brave induction and a solution of brave induction is a solution of LFS.
Then a solution of proper brave induction is always a solution of LFS. Simi-
lar to brave induction, proper brave induction is neither stronger nor weaker
than LFI [3] or confirmatory induction [6]. Notice that, the idea of proper brave
induction can also be extended to these logic frameworks of induction.

On the other hand, there has been much work on induction in nonmono-
tonic logic programs. Otero [10] and Sakama [13] extended the definition of
ILP to the stable model semantics and introduced frameworks for learning pos-
itive/negative examples in NLPs. Ray [12] developed a nonmonotonic ILP sys-
tem, called XHAIL, which combines abduction and induction for constructing
hypotheses. ASPAL [2], another nonmonotonic ILP system, uses ASP as a solver
to compute a solution to a standard ILP task. Later, Law, Russo, and Broda [7]
presented a new paradigm for ILP that allows the learning of ASP programs.
Note that, the optimization based on fewer stable models or answer sets can also
be applied to these nonmonotonic ILP systems.
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7 Conclusion

Motivated from Shapiro’s definition of model inference problems, we provide an
optimization of Sakama and Inoue’s brave induction, called proper brave induc-
tion, for causal theories and ASP programs. A hypothesis is a solution of proper
brave induction, if it is a solution of brave induction and there does not exist
another solution whose set of answer sets is a proper subset of its. We investi-
gate formal properties of proper brave induction and develop an optimization
procedure. At last, we analyze computational complexity of decision problems
for proper brave induction in propositional case. We expect that the idea of the
optimization will be extended to other logical frameworks for concept-learning.
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