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Abstract. Object grasping is a key task in robot manipulation. Per-
forming a grasp largely depends on the object properties and grasp con-
straints. This paper proposes a new statistical relational learning ap-
proach to recognize graspable points in object point clouds. We charac-
terize each point with numerical shape features and represent each cloud
as a (hyper-) graph by considering qualitative spatial relations between
neighboring points. Further, we use kernels on graphs to exploit extended
contextual shape information and compute discriminative features which
show improvement upon local shape features. Our work for robot grasp-
ing highlights the importance of moving towards integrating relational
representations with low-level descriptors for robot vision. We evaluate
our relational kernel-based approach on a realistic dataset with 8 objects.

Keywords: robot grasping, graph-based representations, numerical shape
features, relational kernels, numerical feature pooling

1 Introduction

To operate in the real world, a robot requires good manipulation skills. A good
robot grasp depends on the specific manipulation scenario, and essentially on
the object properties, as well as grasp constraints (e.g., gripper configuration,
environmental restrictions). As in robot manipulation objects are widely de-
scribed using point clouds, robot grasping often relies on finding good mappings
between gripper orientations and object regions (or points). To this end, much
of the current work on robot grasping focuses on adapting low-level descriptors
popular in the computer vision community (i.e., shape context) to characterize
the graspability of an object point. Essentially, this translates into calculating,
for each point in the cloud, a shape feature descriptor that summarizes a limited
neighbouring surface around the point. However, such local shape features do
not work properly on very complex or (self-) occluded objects.

A first contribution of this paper is to investigate whether the structure of
the object can improve robot grasping by means of statistical relational learning
(SRL). In order to do so, we propose to employ a graph-based representation
of the object that exploits both local numerical shape features and higher-level
information about the structure of the object. Given a 3D point cloud of the
object, we characterize each point with shape features and represent the cloud
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as a (hyper-) graph by adding symbolic spatial relations that hold among neigh-
boring object points. As a result, graph nodes corresponding to object points are
characterized by distributions of numerical shape features instead of semantic
labels. The derived relational graph captures extended contextual shape infor-
mation of the object which may be useful to better recognize graspable points.
As an example, consider a graspable point on the rim of a cup. Although it may
be characterized by a misleading local shape descriptor due to its position or
perceptual noise, this can be corrected by nearby graspable points with more
accurate shape features.

As a second contribution, we propose a new relational kernel-based approach
to numerical feature pooling for robot grasping. To recognize graspable points we
employ relational kernels defined on the attributed graph. For each point, our
relational kernel exploits extended contextual information and aggregates (or
pools) numerical shape features according to the graph structure, yielding more
discriminative features. Its benefit is shown experimentally on a realistic dataset.
Our work highlights the importance of moving towards integrating relational
representations with low-level descriptors for robot vision.

We proceed as follows. We first explain in Section 2 the grasping primitives
that define our setup. Afterwards, we present our relational formulation for the
learning problem considered (Section 3) and show how we solve it with variants
of relational kernels (Section 4). Next, in Section 5 we present our experimental
results. Before concluding, we review related work on robot grasping, feature
pooling and graph kernels (Section 6).

2 The Robot Grasping Scenario and Grasping Primitives

We consider the robot scenario in Fig. 1. The robotic platform is next to a table
and on the table there are one or more objects for grasping exploration. The
robot has the following components: a mobile component, an arm, a gripper and
a range camera. An object (e.g., cup, glass) may be placed on the table at various
poses. Each pose provides a point cloud, obtained via the range sensor. The
points above the table are converted, using segmentation techniques (e.g., [21]),
into a point cloud describing the object. Fig. 1 illustrates the point cloud of the
visible side of a cup placed on the table sideways. The goal is to determine the
pre-grasp pose, that is where to place the gripper with respect to the object in
order to execute a stable grasp. Motion planning from the current gripper pose
to the pre-grasp pose reduce the number of grasping hypotheses due to kinematic
and environmental constraints. The reduced set of reachable local regions provide
the data samples for learning to recognize graspable object points.

We consider three types of domain primitives which we use to build our
relational representation (or hyper-graphs) of the grasping problem: reaching
points, their 3D locations and their numerical shape features. Reaching points
are labeled using the simulator. The robot executes grasps on the object points
and if they are successful, the reaching points become positive instances. Next,
each reaching point is characterized by several local 3D shape features computed
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Fig. 1. Robot grasping scenario. The gripper and objects on the table (left). A partial
point cloud of a can placed on the table (right). The (i, j, k) is the reference frame of
the camera centred at the sample point. Its normal is the black line. The (i1, j, k1) is
the reference frame of the 3D grid, which is obtained by rotating the (i, j, k) frame
along the y axis.

in its neighborhood. The neighborhood of each point consists of a 3D grid centred
at the reaching point and oriented with respect to the projection of the points
normal on the table plane and the gravity vector, as illustrated in Fig. 1. We
consider as neighborhood grid, in turn, the gripper cell and a sphere around
the point and calculate three shape features: 3D shape context (SC) [16], point
feature histogram (PFH) [24] and viewpoint feature histogram (VFH) [25].

While the PFH feature encodes the statistics of the shape of a point cloud by
accumulating the geometric relations between all point pairs, the VFH augments
PFH with the relation between the camera’s point of view and the point cloud of
an object. The 3D SC describes the structure of the shape as relations between
a point to the rest of the points in the region.

3 Relational Grasping: Problem Formulation

Next, we represent the grasping primitives as a relational database and use it as
input to our relational learning system. We use the kLog framework [9] to build
our relational kernel-based approach to grasping point recognition. Embedded
in Prolog, kLog is a domain specific language for kernel-based learning, that
allows to specify in a declarative way relational learning problems. It learns
from interpretations [5], transforms the relational databases into graph-based
representations and uses graph kernels to extract the feature space.

Fig. 2 illustrates the information flow in kLog for robot grasping. We model
our graspable point recognition problem starting from the grasping primitives
which we represent as relational databases. Next, we define declaratively spatial
relations between reaching points. The extended relational database is used by
kLog to build kernel features which are finally used for learning. We explain in
more detail each step for our grasping problem.
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Fig. 2. From point clouds to feature vectors in kLog.

3.1 Data modeling

Grasping primitives are represented at a higher level using a relational lan-
guage derived from its associated entity/relationship (E/R) data model, as in
database theory [10], with some further assumptions required by kLog. It is
based on entities, relationships linking entities and attributes that describe en-
tities and relationships. Fig. 3(a) shows the E/R diagram for our grasping point
problem. A reaching entity is any reaching point. It is represented by the rela-
tion point(id, f1, . . . , fn), which indicates that it has a unique identifier id (un-
derlined oval) and shape properties. The vector [f1, . . . , fn] represents a shape
feature characterizing the reaching point. Each fi is a shape feature vector
component and is represented as an entity attribute. For example, the tuple
point(p1, 10.8, . . . , 557.9) specifies a specific reaching point entity (depicted yel-
low in Fig. 3(b)), where p1 is its identifier and the other arguments are shape
feature components.

Relationships are qualitative spatial relations among entities (blue diamonds)
and are derived from their 3D spatial locations. They impose a structure on
reaching entities. In practice, we employ the relationship closeBy2(p1, p3) which
indicates that reaching entities p1 and p3 are spatially close to each other, and
the relationship closeBy3(p1, p2, p3) which indicates that reaching entities p1,
p2 and p3 are spatially close to each other. A special relationship is introduced
by the predicate category(id, class) (white dashed diamond). It is linked to
reaching entities and associates a binary class label grasp/nonGrasp to each
entity, indicating if the reaching point is graspable or not.

3.2 Declarative and Relational Feature Construction

We define the spatial relations using logical rules. For example, the relation
closeBy2/2 holds between two points that belong to the same point cloud and
are spatially close to each other. It is defined as follows:

closeBy2(P1, P2)← point(P1, F11, . . . , F1n), point(P2, F21, . . . , F2n),
sameCloud(P1, V ), sameCloud(P2, V ), edist(P1, P2, Dist), Dist < t.

The relation edist(A,B) is defined in a similar way and represents the nor-
malized Euclidian distance between 2 points in the 3D space. In practice it is
projected on all 3 axes and thresholded on each axis. The threshold t is a con-
stant calculated for every object as a ratio relative to the object dimensions. The
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(a) Proposed E/R scheme: rectangles denote entity vertices, diamonds denote relation-
ships, and circles (except point id) denote local properties.

(b) Part of a glass grounded E/R scheme mapped on its point cloud.

x = {point(p1, 10.8, . . . , 557.9), point(p2, 8.6, . . . , 545.7), point(p3, 19.4, . . . , 569.4),
point(p4, 11.6, . . . , 620.8), point(p5, 18.2, . . . , 572.3), . . . , closeBy2(p1, p3),
closeBy2(p3, p2), closeBy2(p4, p5), . . . , closeBy3(p1, p2, p3), . . . }.
y = {category(p1, nonGrasp), category(p2, nonGrasp), category(p3, nonGrasp),
category(p4, grasp), category(p5, grasp), . . . }.

(c) Point cloud interpretation i = (x, y) of a glass point cloud.

Fig. 3. Relational robot grasping in kLog.

Fig. 4. From point cloud graph to feature vectors in kLog.
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condition sameCloud(P1, V ), sameCloud(P2, V ) specifies that P1 and P2 belong
to the same point cloud V .

In our defined setting each point cloud is represented as an instance of a
relational database (i.e., as a set of relations), and thus, as a point cloud inter-
pretation. Object point clouds are assumed to be independent. An example of a
point cloud interpretation is given in Fig. 3(c).

3.3 The Relational Problem Definition

We formulate the learning problem at the relational representation level in the
following way: given a training set D = {(x1, y1), . . . , (x2, y2), . . . , (xm, ym)} of
m independent interpretations, the goal is to learn a mapping h : X → Y, where
X denotes the set of all instances xki in any point cloud interpretation i, with
i ∈ {1, . . . ,m} and Y is the set of target atoms yki . The pair ek = (xki , y

k
i ) is a

training example, where k ∈ {1, . . . , n} and n is the number of training instances
in the point cloud interpretation i. One training example ek is, thus, a smaller
interpretation, part of the larger point cloud interpretation, and corresponds
to one point in the object point cloud. Given a new point in a point cloud
interpretation we can use h to predict its target category category/2.

3.4 Graphicalization

Next, each interpretation x is converted into a bipartite graph G which intro-
duces a vertex for each ground relation. Vertices correspond to either entities or
relationships, but identifiers are removed. Edges connect entities and relation-
ships. Fig. 3(b) shows part of the graph mapped on a point cloud. The graph is
the result of grounding the E/R diagram for a particular point cloud.

4 Relational Kernel Features

We solve the grasping recognition problem in a supervised learning setting. We
employ two variants of the fast neighborhood subgraph pairwise distance kernel
[4]. The kernel is a decomposition kernel [11] that counts the number of common
”parts” between two graphs. In our case the graph represents the contextual
shape information of one point in the point cloud. The decomposition kernel
between two graphs is defined with the help of relations Rr,d (r = 0, . . . , R and
d = 0, . . . , D) as follows:

K(G,G′) =

R∑
r=0

D∑
d=0

∑
A,B ∈ R−1

r,d(A,B,G)

A′, B′ ∈ R−1
r,d(A

′, B′, G′)

κ((A,B), (A′, B′)) (1)

where R−1r,d(A,B,G) returns the set of all pairs of neighborhoods (or balls) (A,B)
of radius r with roots at distance d that exist in G. Thus, a ”part” is a pair of
neighborhoods (or a pair of balls). Fig. 4 shows a neighborhood-pair feature
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with R = 2 and D = 2 for our grasping problem. The kernel hyper-parameters
maximum radius R and maximum distance D are set experimentally. We ensure
that only neighborhoods centered on the same type of vertex will be compared,
constraint imposed by the equation:

κ((A,B), (A′, B′)) = κroot((A,B), (A′, B′)) · κsubgraph((A,B), (A′, B′)), (2)

where the component κroot((A,B), (A′, B′)) is 1 if the neighborhoods to be com-
pared have the same type of roots, while the component κsubgraph((A,B), (A′, B′))
compares the pairs of neighborhood graphs extracted from two graphs G and G′.
We solve the grasping problem using two specializations of κsubgraph. Because we
deal both with symbolic and numerical attributed graphs, we employ a hard-soft
variant which combines an exact matching kernel for the symbolic relations and
a soft match kernel for numerical properties of the relations, and a soft variant
which uses only a soft match kernel.

Soft matching The soft matching kernel uses the idea of multinomial distri-
bution (i.e., histogram) of labels. It discards the structural information inside
the graph. Contextual information is still incorporated by the (sum) pooling
operation applied on the numerical properties of the points.

κsubgraph((A,B), (A′, B′)) =
∑

v ∈ V (A) ∪ V (B)
v′ ∈ V (A′) ∪ V (B′)

1`(v)=`(v′)κtuple(v, v
′) (3)

where V (A) is the set of vertices of A and `(v) is the label of vertex v. If the atom
point(p1, f1, . . . , fc, . . . , fm) is mapped into vertex v, `(v) returns the signature
name point. In this case κ is decomposed in a part that counts the vertices
that share the same labels `(v) in the neighborhood pair and ensures matches
between tuples with the same signature name (1`(v)=`(v′)), and a second part
that takes into account the tuple of property values. These are real values and
thus, the kernel on the tuple considers each element of the tuple independently
with the standard product:

κtuple(v, v
′) =

∑
c

propc(v) · propc(v′) (4)

where for the atom point(p1, f1, . . . , fc, . . . , fm), mapped into vertex v, propc(v)
returns the property value fc. In words, the kernel will count the number of
symbolic labels and will sum property values that belong to vertices with same
labels l(v) that are contained in the neighborhood pair.

Hard-soft matching The hard-soft variant replaces the label l(v) in Equa-
tion 3 with a relabeling procedure for the discrete signature names. We proceed
with a canonical encoding that guarantees that each vertex receives a label that
identifies it in the neighborhood graph based on the exact extracted structure
of the ball with respect to the relabeled vertex. Then, the exact match ker-
nel for the discrete part is defined as κsubgraph((A,B), (A′, B′)) = 1 iff (A,B)
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and (A′, B′) are pairs of isomorphic graphs. The isomorphism is ensured by the
vertices canonical relabeling. This match ensures that the contextual structure
of the subgraphs matched is the same. Concerning the real valued properties,
we use the standard product as in Equation 4 for the tuples of vertices with
same relabelings. The spatial relations injected in the graph and its structure
ensures that the pooled features are the ones belonging to vertices with a similar
relabeling. In this way, we only sum the features with same contextual structure.

There are several advantages of using kLog and its kernel-based language.
First, it can take relational contextual features into account in a principled way.
Second, it allows fast computations with respect to the interpretation size, which
allows us to explore different measures of contextual information via the kernel
hyper-parameters. Third, it provides a flexible architecture in which only the
specification language for relational learning problems is fixed. Actual features
are determined by the choice of the graph kernel. In this setting, experimenting
with alternative feature spaces is rapid and intuitive. For more details, see [9].

5 Experiments

We evaluate whether our relational kernel-based approach can exploit contextual
shape information by pooling numerical features. Specifically, we investigate the
following questions:
(Q1) Does numerical shape feature pooling improve upon local shape features
for the robot grasping task considered?
(Q2) Does hard-soft matching improve over soft matching when incorporating
contextual shape information?

To answer these questions, we perform experiments with all shape features
considered in turn.

5.1 Dataset and Evaluation

We consider a realistic dataset similar to that in [20]. It is gathered using 8
objects: ellipse, rectangle, rounded object, 2 glasses and 3 cups. It contains 2631
instances (1972 positives and 659 negatives). The goal is to evaluate the perfor-
mance of our approach across the different objects considered. We estimate it
under partial views, that is each object is characterized by several partial point
clouds, one for each view. The number of views can differ from object to object.
Fig. 5 shows four views for one of the cups. In practice, all views belonging to the
same object are mapped to one interpretation, and thus, one interpretation cor-
responds to one object. Because the views are not spatially aligned, we consider
spatial relations only between points that belong to the same view.

For performance evaluation, we apply the leave-one-out validation method
where one object is used for testing and the rest for training. In all our experi-
ments we used a SVM with a linear kernel on top of the relational kernel features.
The SVM cost parameter was set to 1. Because the dataset is unbalanced (with
more positives than negatives), we evaluate performance in terms of the area
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Fig. 5. Point clouds representing partial views of a cup.

AUC AP Acc (%) TPR (%)
Shape features sphere gr cell sphere gr cell sphere gr cell sphere gr cell

VFH 0.47 0.70 0.73 0.86 40.29 75.33 32.76 89.50
VFH+closeBy2 0.71 0.78 0.85 0.91 74.08 76.81 82.61 88.24
VFH+closeBy3 0.54 0.71 0.75 0.87 73.20 76.02 91.58 93.41

PFH 0.48 0.69 0.74 0.85 47.74 69.63 49.54 75.41
PFH+closeBy2 0.70 0.81 0.84 0.92 73.66 78.22 82.30 87.02
PFH+closeBy3 0.53 0.73 0.76 0.88 72.48 75.10 87.98 89.66

SC 0.54 0.72 0.78 0.86 72.41 66.67 86.82 65.77
SC+closeBy2 0.74 0.79 0.88 0.90 77.35 79.67 89.86 90.01
SC+closeBy3 0.62 0.70 0.81 0.85 74.53 76.28 87.78 94.52

Table 1. Hard-soft matching results for sphere and gripper(gr) cell setups.

under the ROC curve (AUC) and the area under the precision-recall curve (AP)
which are not sensitive to the distribution of instances to classes. We also report
the true positive rate (TPR) and accuracy (Acc) for both datasets.

5.2 Results and discussion

In the following we present quantitative experimental results for both questions.
Results in bold font indicate the best performance. For each feature type we
start with local feature vectors and we gradually add the different relations con-
sidered, closeBy2/2 and closeBy3/2, respectively. As a baseline for comparison
we use the local feature vectors alone, without any spatial relations. We report
performance results using the hard-soft matching kernel in Table 1 for sphere
features and gripper cell features setups. They are obtained for hyper-parameters
R=2 and D=2/D=4. Our results show that the use of qualitative relations to
pool features improves robot grasping performance for all shape feature types
considered. This answers positively (Q1).

We answer question (Q2) by plotting the ROC curves for both soft and hard-
soft kernels for sphere and gripper cell features. The results in Fig. 6(a) and (b)
show that hard-soft matching improves considerably upon soft matching. The
curves correspond to hyper-parameters R = 2,D = 2 and closeBy2/2 relation,
which give the best performance. Thus, contextual structure in the point cloud
is highly relevant and ensures pooling the right numerical shape features.
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(a) sphere features (b) gripper cell features

Fig. 6. ROC curves for soft and hard-soft matching kernels; R=2,D=2; VFH/PFH/SC
+ closeBy2.

6 Related work

In visual recognition a number of feature extraction techniques based on image
descriptors (e.g., SIFT) have been proposed. They usually encode the descriptors
over a learned codebook and then summarize the distribution of the codes by
a pooling step [3, 12]. While the coding step produces representations that can
be aggregated without losing too much information, pooling these codes gives
robustness only to small transformations of the image. One fact that makes the
coding step necessary in standard computer vision tasks is that image descrip-
tors such as SIFT cannot be pooled directly with their neighbours without losing
information. Differently, our contribution for robot grasping considers shape fea-
ture pooling without the coding step, by means of SRL techniques.

Previous works on visual-dependent robot grasping have shown promising re-
sults on learning grasping points from image-based 2D descriptors [18,26]. Other
works exploit combinations of image-based and point cloud-based features [2,13].
Saxena et. al. [26] propose to infer grasping probabilities from image filter re-
sponses at the object points. Their approach allows to discriminate graspable
from non-graspable points and transfer knowledge to new objects. However, it
does not consider the parameters of the gripper to estimate the quality of the
grasping. Jiang et. al. [13] extend this approach by computing grasping stability
features from the point clouds. In their method, the point cloud features are
linked to the gripper configuration, while the image-based features are linked
to the visual graspability of a point. Differently, we consider dense 3D data for
both gripper configuration and visual graspability. Kraft et. al. [14, 15] propose
to learn by exploration graspable points of an object. Nevertheless, their learn-
ing procedure is attached to each object, and it is difficult to transfer the skills
learned to other objects. A major difference is that we learn with features that
generalize across objects.
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Furthermore, a significant number of vision-based grasping methods learn
mappings from 2D/3D features to grasping parameters [2, 17, 19, 27]. However,
it turns out that it is difficult to link a 3D gripper orientation to local shape
features without considering contextual or global object information. Only re-
cently, methods that take more global and symbolic information into account
have been proposed [1, 22, 23]. They benefit from increased geometric robust-
ness, which gives advantages with respect to the pre-shape of the robotic hand
and general shape of the object, generating more accurate grasps. Distinctively,
our contribution to robot grasping exploits contextual shape information of ob-
jects by employing a new relational approach to numerical shape feature pooling
that considers symbolic and numerical attributed graphs.

From the SRL perspective, purely relational learning techniques have been
previously used to learn from point clouds. The work in [7, 8] uses first-order
clause inducing systems to learn from discrete primitives (e.g., planes, cylinders)
classifiers for concepts such as boxes, walls, cups or stairs. Differently, we propose
a SRL approach to recognize graspable points that is based on numerical shape
feature pooling via relational kernels.

7 Conclusions

This paper proposes a relational kernel-based approach to recognize graspable
object points. We represent each object as an attributed graph, where nodes
corresponding to object points are characterized by distributions of numerical
shape features. Extended contextual object shape information is encoded via
qualitative spatial relations among object points. Next, we use kernels on graphs
to compute highly discriminative features based on contextual information. We
show experimentally that pooling spatially related numerical shape feature im-
proves robot grasping results upon purely local shape-based approaches.

We point out three directions for future work. A first direction is to investigate
how similar SRL techniques working directly with numerical features can help
other robot vision tasks. A second direction is to validate our results on datasets
that contain a wider range of object categories. Finally, a third direction is to
investigate other spatial relations or domain knowledge that could give even
better results for the robot grasping problem considered.
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