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Abstract. Data-driven elicitation of ontologies from structured data is
a well-recognized knowledge acquisition bottleneck. The development of
efficient techniques for (semi-)automating this task is therefore practi-
cally vital — yet, hindered by the lack of robust theoretical foundations.
In this paper, we study the problem of learning Description Logic TBoxes
from interpretations, which naturally translates to the task of ontology
learning from data. In the presented framework, the learner is provided
with a set of positive interpretations (i.e., logical models) of the TBox
adopted by the teacher. The goal is to correctly identify the TBox given
this input. We characterize the key constraints on the models that war-
rant finite learnability of TBoxes expressed in selected fragments of the
Description Logic EL and define corresponding learning algorithms.

1 Introduction

In the advent of the Web of Data and various “e-” initiatives, such as e-science,
e-health, e-governance, etc., the focus of the classical knowledge acquisition bot-
tleneck becomes ever more concentrated around the problem of constructing rich
and accurate ontologies enabling efficient management of the existing abundance
of data [1]. Whereas the traditional understanding of this bottleneck has been
associated with the necessity of developing ontologies ex ante, in a top-down,
data-agnostic manner, this seems to be currently evolving into a new position,
recently dubbed the knowledge reengineering bottleneck [2]. In this view, the
contemporary challenge is to, conversely, enable data-driven approaches to on-
tology design — methods that can make use and make sense of the existing data,
be it readily available on the web or crowdsourced, leading to elicitation of the
ontological commitments implicitly present on the data-level. Even though the
development of such techniques and tools, which could help (semi-)automate
thus characterized ontology learning processes, becomes vital in practice, the
robust theoretical foundations for the problem are still rather limited. This gap
is addressed in the present work.

In this paper, we study the problem of learning Description Logic (DL)
TBoxes from interpretations, which naturally translates to the task of ontol-
ogy learning from data. DLs are a popular family of knowledge representation



formalisms [3], which have risen to prominence as, among others, the logics un-
derpinning different profiles of the Web Ontology Language OWL3. In this paper,
we focus on the lightweight DL EL [4] and some of its more specific fragments.
This choice is motivated, on the one hand, by the interesting applications of
EL, especially as the logic behind OWL 2 EL profile, while on the other, by its
relative complexity, which enables us to make interesting observations from the
learning perspective. Our learning model is a variant of learning from positive
interpretations (i.e., from models of the target theory) — a generally established
framework in the field of inductive logic programming [5,6]. In our scenario, the
goal of the learner is to correctly identify the target TBox T given a finite set
of its finite models. Our overarching interest lies in algorithms warranting ef-
fective learnability in such setting with no or minimum supervision. Our key
research questions and contributions are therefore concerned with the identifica-
tion of specific languages and conditions on the learning input under which such
algorithms can be in principle defined.

In the following two sections, we introduce DL preliminaries and discuss
the adopted learning model. In Section 4, we identify two interesting fragments
of EL, called ELrhs and ELlhs, which satisfy some basic necessary conditions
enabling finite learnability, and at the same time, we show that full EL does
not meet that same requirement. In Section 5, we devise a generic algorithm
which correctly identifies ELrhs and ELlhs TBoxes from finite data, employing
a basic equivalence oracle. Further, in case of ELrhs, we significantly strengthen
this result by defining an algorithm which makes no such calls to an oracle,
and thus supports fully unsupervised learning. In Section 6, we compare our
work to related contributions, in particular to the framework of learning TBoxes
from entailment queries, by Konev et al. [7]. We conclude in Section 7 with an
overview of interesting open problems.

2 Description Logic Preliminaries

The language of the Description Logic (DL) EL [4] is given by (1) a vocabulary
Σ = (NC , NR), where NC is a set of concept names and NR a set of role names,
and (2) the following set of constructors for defining complex concepts, which
shall be divided into two groups:

EL: C,D ::= > | A | C uD | ∃r.C
Lu: C,D ::= > | A | C uD

where A ∈ NC and r ∈ NR. The set of Lu concepts naturally captures the
propositional part of EL. The depth of a subconcept D in C is the number of
existential restrictions within the scope of which D remains. The depth of a
concept C is the depth of its subconcept with the greatest depth in C. Every Lu
concept is trivially of depth 0.

3 See http://www.w3.org/TR/owl2-profiles/.
This work was funded in part by the National Research Foundation under Grant no.
85482.
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The semantics is defined through interpretations of the form I = (∆I , ·I),
where ∆I is a non-empty domain of individuals and ·I is an interpretation
function mapping eachA ∈ NC to a subsetAI ⊆ ∆I and each r ∈ NR to a binary
relation rI ⊆ ∆I ×∆I . The interpretation function is inductively extended over
complex expressions according to the fixed semantics of the constructors:

>I = ∆I

(C uD)I = {x ∈ ∆I | x ∈ CI ∩DI}
(∃r.C)I = {x ∈ ∆I | ∃y : (x, y) ∈ rI ∧ y ∈ CI}

A concept inclusion is an expression of the form C v D, stating that all
individuals of type C are D, as in, e.g.: Father of son v Manu∃hasChild.Man. The
language fragments considered in this paper are categorized w.r.t. restrictions
imposed on the syntax of concepts C and D in permitted concept inclusions
C v D:

EL: C and D are both EL concepts;

ELrhs: C is an Lu concept and D an EL concept;

ELlhs: C is an EL concept and D an Lu concept;
Lu: C and D are both Lu concepts.

A TBox (or ontology) is a finite set of concept inclusions, also called the
TBox axioms, in a given language fragment.

An interpretation I satisfies a concept inclusion C v D (I |= C v D) iff
CI ⊆ DI . Whenever I satisfies all axioms in a TBox T (I |= T ), we say that I
is a model of T . For a set of interpretations S, we write S |= C v D to denote
that every interpretation in S satisfies C v D. We say that T entails C v D
(T |= C v D) iff every model of T satisfies C v D. Two TBoxes T and H are
(logically) equivalent (T ≡ H) iff they have the same sets of models.

A pointed interpretation (I, d) is a pair consisting of a DL interpretation
I = (∆I , ·I) and an individual d ∈ ∆I , such that every e ∈ ∆I different from
d is reachable from d through some role composition in I. By a slight abuse of
notation, given an arbitrary DL interpretation I and an individual d ∈ ∆I , we
write (I, d) to denote the largest subset I ′ of I such that (I ′, d) is a pointed
interpretation. If it is clear from the context, we refer to pointed interpretations
and pointed models simply as interpretations and models. We say that (I, d) is
a model of a concept C iff d ∈ CI ; it is a model of C w.r.t. T whenever also
I |= T .

An interpretation (I, d) can be homomorphically embedded in an interpreta-
tion (J , e), denoted as (I, d) 7→ (J , e), iff there exists a mapping h : ∆I 7→ ∆J ,
satisfying the following conditions:

– h(d) = e,
– if (a, b) ∈ rI then (h(a), h(b)) ∈ rJ , for every a, b ∈ ∆I and r ∈ NR,
– if a ∈ AI then h(a) ∈ AJ , for every a ∈ ∆I and A ∈ NC .

A model (I, d) of C (w.r.t. T ) is called minimal iff it can be homomor-
phically embedded in every other model of C (w.r.t. T ). It is well-known that

3



EL concepts and TBoxes always have such minimal models (unique up to ho-
momorphic embeddings) [8]. As in most modal logics, arbitrary EL models can
be unravelled into equivalent tree-shaped models. Finally, we observe that due
to a tight relationship between the syntax and semantics of EL, every tree-
shaped interpretation (I, d) can be viewed as an EL concept CI , such that
(I, d) is a minimal model of CI . Formally, we set CI = C(d), where for every
e ∈ ∆I we let C(e) = > u A(e) u ∃(e), with A(e) =

d
{A ∈ NC | e ∈ AI} and

∃(e) =
d

(r,f)∈NR×∆I s.t. (e,f)∈rI ∃r.C(f). In that case we call CI the covering

concept for (I, d).

3 Learning Model

The learning model studied in this paper is a variant of learning from positive
interpretations [5,6]. In our setting, the teacher fixes a target TBox T , whose
set of all models is denoted by M(T ). Further, the teacher presents a set of
examples fromM(T ) to the learner, whose goal is to correctly identify T based
on this input. The learning process is conducted relative to a mutually known
DL language L and a finite signature ΣT used in T . Obviously, M(T ) contains
in principle sufficient information in order to enable correct identification of T ,
as the following correspondence implies:

M(T ) |= C v D iff T |= C v D, for every C v D in L.

However, as M(T ) might consist of infinitely many models of possibly infinite
size, the teacher cannot effectively present them all to the learner. Instead, the
teacher must confine him- or herself to certain finitely presentable subset of
M(T ), called the learning set. For the sake of clarity, we focus here on the
simplest case when learning sets consist of finitely many finite models.4 Formally,
we summarize the learning model with the following definitions.

Definition 1 (TIP). A TBox Identification Problem (TIP) is a pair (T ,S),
where T is a TBox in a DL language L and S, called the learning set, is a finite
set of finite models of T .

Definition 2 (Learner, identification). For a DL language L, a learner is
a computable function G, which for every set S over ΣT returns a TBox in L
over ΣT . Learner G correctly identifies T on S whenever G(S) ≡ T .

Definition 3 (Learnability). For a DL language L, the class of TBoxes ex-
pressible in L is learnable iff there exists a learner G such that for every TBox
T in L there exists a learning set S on which G correctly identifies T . It is said
to be finitely learnable whenever it is learnable from finite learning sets only.

4 An alternative, more general approach can be defined in terms of specific fragments
of models. Such generalization, which lies beyond the scope of this paper, is essential
when the learning problem concerns languages without finite model property.
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Mother ≡Woman u ∃hasChild.>
Father ≡ Man u ∃hasChild.>

Father of son ≡ Father u ∃hasChild.Man

Man, Father, Father_of_son

Man Man, FatherWoman, Mother

hasChildhasChildhasChild Woman

Fig. 1. A sample TIP with an EL TBox (above, where C ≡ D abbreviates C v D and
D v C) and a finite learning set (below).

We are primarily interested here in the notion of finite learnability, as it pro-
vides a natural formal foundation for the task of ontology learning from data.
Intuitively, any finite collection of data, structured with respect to some im-
plicitly adopted ontology, can be seen as a potentially instructive learning set,
as presented in an example in Figure 1. The key question is then what formal
criteria must this set satisfy to warrant correct identification of the ontology
constraining it. To this end we employ the basic admissibility condition, charac-
teristic also of other learning frameworks [9], which ensures that the learning set
is sufficiently rich to enable precise discrimination between the correct hypothesis
and all the incorrect ones.

Definition 4 (Admissibility). A TIP (T ,S) is admissible iff for every C v D
in L such that T 6|= C v D there exists I ∈ S such that I 6|= C v D.

For the target TBox T , let T 6|= to be the set of all concept inclusions in L
that are not entailed by T , i.e., T 6|= = {C v D in L | T 6|= C v D}. The
admissibility condition requires that for every C v D ∈ T 6|=, the learning set
S must contain a “counterexample” for it, i.e., an individual d ∈ ∆I , for some
I ∈ S, such that d ∈ CI and d 6∈ DI . Consequently, any learning set must
contain such counterexamples to all elements of T 6|=, or else, the learner might
never be justified to exclude some of these concept inclusions from the hypothesis.
If it was possible to represent them finitely we could expect that ultimately the
learner can observe all of them and correctly identify the TBox. In the next
section, we investigate this prospect formally in different fragments of EL.

4 Finite Learning Sets

As argued in the previous section, to enable finite learnability of T in a given
language L, the relevant counterexamples to all the concept inclusions not en-
tailed by T must be presentable within a finite learning set S. Firstly, we can
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immediately observe that this requirement is trivially satisfied for Lu. Clearly,
Lu can only induce finitely many different concept inclusions (up to logical
equivalence) on finite signatures, such as ΣT . Hence, the set T 6|= can always be
finitely represented (up to logical equivalence) and it is straightforward to finitely
present counterexamples to all its members. For more expressive fragments of
EL, however, this cannot be assumed in general, as the ∃r.C constructor induces
infinitely many concepts. One negative result comes with the case of EL itself,
as demonstrated in the next theorem.

Theorem 1 (Finite learning sets in EL). Let T be a TBox in EL. There
exists no finite set S such that (T ,S) is admissible.

The full proof of this and subsequent results is included in the online tech-
nical report [10]. The argument rests on the following lemma. Let (T ,S) be
an admissible TIP and C a concept. By S(C) we denote the set of all models
(I, d) of C w.r.t. T such that I ∈ S. By

⋂
S(C) we denote the intersection

of all these models, i.e., the model (J , d), such that (J , d) 7→ (I, d) for every
(I, d) ∈ S(C), and for every other model (J ′, d) such that (J ′, d) 7→ (I, d) for
every (I, d) ∈ S(C) and (J , d) 7→ (J ′, d), it is the case that (J ′, d) 7→ (J , d).

Lemma 1 (Minimal model lemma). Let (T ,S) be an admissible TIP for T
in EL (resp. in ELrhs), and C be an EL (resp. Lu) concept. Whenever S(C) is
non-empty then

⋂
S(C) is a minimal model of C w.r.t. T .

Given the lemma, we consider a concept inclusion of type:

τn := ∃r. . . . ∃r.︸ ︷︷ ︸
n

> v ∃r. . . . ∃r.∃r.︸ ︷︷ ︸
n+1

>

Suppose τn ∈ T 6|= for some n ∈ N. Since by the admissibility condition a coun-
terexample to τn must be present in S, it must be the case that S(C) 6= ∅, where
C is the left-hand-side concept in τn. By the lemma and the definition of a min-
imal model, it is easy to see that S must contain a finite chain of individuals of
length exactly n+ 1, as depicted below:

• r−−−−−→ • . . . • r−−−−−→ •︸ ︷︷ ︸
n+1

Finally, since there can always exists some n ∈ N, such that τm ∈ T 6|= for every
m ≥ n, we see that the joint size of all necessary counterexamples in such cases
must inevitably be also infinite. Consequently, for some EL TBoxes admissible
TIPs based on finite learning sets might not exist, and so finite learnability
cannot be achieved in general.

One trivial way to tame this behavior is to “finitize” T 6|= by delimiting the
entire space of possible TBox axioms to a pre-defined, finite set. This can be
achieved, for instance, by restricting the permitted depth of complex concepts
or generally setting some a priori bound on the size of axioms. Such ad hoc
solutions, though likely efficient in practice, are not very elegant. As a more
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interesting alternative, we are able to show that there exist at least two languages
between Lu and EL, namely ELlhs and ELrhs, for which finite learning sets are
always guaranteed to exist, regardless of the fact that they permit infinitely many
concept inclusions. In fact, we demonstrate that in both cases such learning sets
might well consist of exactly one exemplary finite model.

We adopt the technique of so-called types, known from the area of modal log-
ics [11]. Types are finite abstractions of possible individuals in the interpretation
domain, out of which arbitrary models can be constructed. Let con(T ) be the set
of all concepts (and all their subconcepts) occurring in T . A type over T is a set
t ⊆ con(T ), such that C uD ∈ t iff C ∈ t and D ∈ t, for every C uD ∈ con(T ).
A type t is saturated for T iff for every C v D ∈ T , if C ∈ t then D ∈ t. For
any S ⊆ con(T ), we write tS to denote the smallest saturated type containing
S. It is easy to see, that tS must be unique for EL.

The next theorem addresses the case of ELrhs. Figure 2 illustrates a finite
learning set for a sample ELrhs TBox, following the construction in the proof.

Theorem 2 (Finite learning sets in ELrhs). Let T be a TBox in ELrhs.
There exists a finite set S such that (T ,S) is admissible.

Proof sketch. Let Θ be the smallest set of types satisfying the following condi-
tions:

– tS ∈ Θ, for every S ⊆ NC and for S = {>},
– if t ∈ Θ then t{C} ∈ Θ, for every ∃r.C ∈ t.

We define the interpretation I = (∆I , ·I) as follows:

– ∆I := Θ,
– t ∈ AI iff A ∈ t, for every t ∈ Θ and A ∈ NC ,
– (t, t{C}) ∈ rI , for every t ∈ Θ, whenever ∃r.C ∈ t.

Then S = {I} is a finite learning set such that (T ,S) is admissible. q

A, ∃r.(A⊓B)

A, B, A⊓B, ∃r.(A⊓B), ∃r.∃r.A B, ∃r.∃r.A

∃r.A

Fig. 2. A finite learning set for an ELrhs TBox {A v ∃r.(A u B), B v ∃r.∃r.A} (all
arrows represent r-relations). The figure includes type contents (in grey), as defined in
the proof of Theorem 2.

A similar, though somewhat more complex construction demonstrates the
existence of finite learning sets in ELlhs. Again, we illustrate the approach with
an example in Figure 3.
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Theorem 3 (Finite learning sets in ELlhs). Let T be a TBox in ELlhs. There
exists a finite set S such that (T ,S) is admissible.

Proof sketch. Let Θ be the set of all saturated types over T , and Θ∗ be its subset
obtained by iteratively eliminating all those types t that violate the following
condition: for every r ∈ NR and every existential restriction ∃r.C ∈ t there is
u ∈ Θ∗ such that:

– C ∈ u,
– for every ∃r.D ∈ con(T ), if D ∈ u then ∃r.D ∈ t.

Further, we define the interpretation I = (∆I , ·I) as follows:

– ∆I := Θ∗,
– t ∈ AI iff A ∈ St, for every t ∈ Θ∗ and A ∈ NC ,
– (t, u) ∈ rI iff for every ∃r.C ∈ con(T ), if C ∈ u then ∃r.C ∈ t.

Then S = {I} is a finite learning set such that (T ,S) is admissible. q

A, ∃r.∃r.A

A, ∃r.A

∃r.A

A

A, ∃r.∃r.A, ∃r.A

Fig. 3. A finite learning set for an ELlhs TBox {∃r.∃r.A v A} (all arrows represent
r-relations). The figure includes type contents (in grey), as defined in the proof of
Theorem 3.

5 Learning Algorithms

In this section we devise basic learning algorithms that correctly identify ELlhs

and ELrhs TBoxes in admissible TIPs based on finite learning sets. Since T 6|=
can be in general still infinite, our starting observation is that a learner cannot
effectively eliminate concept inclusions from T 6|= using a straightforward enumer-
ation, thus arriving at the target TBox T . The only feasible strategy is to try
to identify the “good” candidate axioms to be included in T , and possibly ap-
ply the elimination strategy only to finitely many incorrect guesses. One generic
procedure to employ such heuristic, which we define as Algorithm 1, attempts
to construct the hypothesis by extending it with consecutive axioms of system-
atically growing size that are satisfied by the learning set. There, by `(C v D)
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Algorithm 1 Learning ELrhs/ELlhs TBoxes on finite inputs.

Input: a TIP (T ,S)
Output: a hypothesis TBox H
1: n := 2
2: Hn := ∅
3: while ‘Hn ≡ T ’? is ‘NO’ (equivalence oracle querying) do
4: n := n+ 1
5: Candn := {C v D ∈ ELrhs/ELlhs | `(C v D) = n}
6: Acceptn := {C v D ∈ Candn | S |= C v D}
7: Hn := Hn−1 ∪ Acceptn
8: end while
9: return Hn

we denote the size of the axiom C v D measured in the total number of symbols
used for expressing this axiom. At each step the algorithm makes use of a simple
equivalence oracle, which informs whether the currently considered hypothesis
is already equivalent to the learning target (in that case the identification suc-
ceeds) or whether some axioms are still missing. Theorem 4 demonstrates the
correctness of this approach.

Theorem 4 (Correct identification in ELrhs/ELlhs). Let (T ,S) be an ad-
missible TIP for T in ELrhs/ELlhs. Then the hypothesis TBox H generated by
Algorithm 1 is equivalent to T .

Obviously the use of the oracle is essential to warrant termination of the
algorithm. It is not difficult to see that without it, the algorithm must still
converge on the correct TBox for some n ∈ N, and consequently settle on it, i.e.,
Hm ≡ Hn for everym ≥ n. However, at no point of time can it guarantee that the
convergence has been already achieved, and so it can only warrant learnability
in the limit. This result is therefore not entirely satisfactory considering we aim
at finite learnability from data in the unsupervised setting.

A major positive result, on the contrary, can be delivered for the case of
ELrhs, for which we devise an effective learning algorithm making no reference
to any oracle. It turns out that in ELrhs the “good” candidate axioms can be
directly extracted from the learning set, thus granting a proper unsupervised
learning method. The essential insight is provided by Lemma 1, presented in
the previous section. Given any Lu concept C such that S(C) 6= ∅ we are able
to identify a tree-shaped minimal model of C w.r.t. T . Effectively, it suffices
to retrieve only the initial part of this model, discarding its infinitely recurrent
(cyclic) subtrees. Such an initial model Iinit is constructed by Algorithm 2. The
algorithm performs simultaneous unravelling of all models in S(C), while on the
way, computing intersections of visited combinations of individuals, which are
subsequently added to the model under construction. Whenever the same com-
bination of individuals is about to be visited for the second time on the same
branch it is skipped, as the cycle is evidently detected. The covering concept
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Algorithm 2 Computing the initial part of the minimal model
⋂
S(C)

Input: the set S(C) = {(Ii, di)}0≤i≤n, for some n ∈ N
Output: a finite tree-shaped interpretation (J , d), where J = (∆J , ·J )
1: ∆J := {f(d0, . . . , dn)}, for a “fresh” function symbol f
2: AJ := ∅, for every A ∈ NC
3: rJ := ∅, for every r ∈ NR
4: for every f(d0, . . . , dn) ∈ ∆J , (e0, . . . , en) ∈ ∆I0 × . . .×∆In , r ∈ NR do
5: if (di, ei) ∈ rIi for every 0 ≤ i ≤ n and there exists no function symbol g

such that g(e0, . . . , en) is an ancestor of f(d0, . . . , dn) in J then
6: ∆J := ∆J ∪ {g(e0, . . . , en)}, for a “fresh” function symbol g
7: rJ := rJ ∪ {(f(d0, . . . , dn), g(e0, . . . , en))}
8: end if
9: end for

10: for every f(d0, . . . , dn) ∈ ∆J , A ∈ NC do
11: if di ∈ AIi for every 0 ≤ i ≤ n then
12: AJ := AJ ∪ {f(d0, . . . , dn)}
13: end if
14: end for
15: return (J , f(d0, . . . , dn)), where f(d0, . . . , dn) is the root of J , created at

step 1.

CIinit
for the resulting interpretation Iinit is then included in the hypothesis

within the axiom C v CIinit . Meanwhile, all Lu concepts C such that S(C) = ∅
are ensured to entail every EL concept, as implied by the admissibility condi-
tion. The contents of the hypothesis TBox are formally specified in Definition 5.
Theorem 5 demonstrates the correctness of the whole learning procedure.

Definition 5 (ELrhs hypothesis TBox). Let (T ,S) be an admissible TIP for
T in ELrhs over the signature ΣT . The hypothesis TBox H is the set consisting
of all the following axioms:

– C v CIinit for every Lu concept C such that S(C) 6= ∅, where CIinit is the
covering concept for the interpretation (Iinit, d) generated by Algorithm 2 on
S(C);

– C v
d
r∈NR

∃r.
d
NC for every Lu concept C such that S(C) = ∅.

Theorem 5 (Correct identification in ELrhs). Let (T ,S) be an admissible
TIP for T in ELrhs. Then the hypothesis TBox H for S is equivalent to T .

The learning algorithm runs in double exponential time in the worst case and
generates TBoxes of double exponential size in the size of S. This follows from
the fact that the tree-shaped interpretations generated by Algorithm 2 might
be of depth exponential in the number of individuals occurring in S and have
exponential branching factor. Importantly, however, there might exist solutions
far closer to being optimal which we have not as far investigated.

It is our strong conjecture, which we leave as an open problem, that a related
learning strategy should also be applicable in the context of ELlhs.
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6 Related Work

An alternative approach to learning DL TBoxes, based on Angluin’s model
of learning from entailment [12], was recently introduced by Konev et al. [7].
There, the learner identifies the TBox by posing two types of queries: entailment
(“T |= C v D?”) and equivalence (“H ≡ T ? If no, then return a positive or a
negative counterexample”). The authors study polynomial learnability and de-
fine corresponding algorithms for ELlhs and ELrhs, while for EL they show that
such polynomial algorithm does not exist. Apart from the obvious differences
in the motivation underlying both learning models (unsupervised learning from
data vs. learning by queries from an expert), there are also some strong formal
connections. Essentially, given a finite learning set in an admissible TIP, a learner
from interpretations can autonomously answer arbitrary entailment queries, thus
effectively simulating the entailment oracle. However, the learner does not have
by default access to the equivalence oracle. Once such oracle is included, as done
in our Algorithm 1, the learning power of both learners becomes comparable
(note that with some smart heuristic our learner can find a positive or nega-
tive counterexample whenever the oracle gives a negative answer). In this sense,
our Theorem 4 should be also indirectly derivable from the results by Konev et
al. However, our stronger result for ELrhs in Theorem 5 demonstrates that, at
least in some cases, the learner from interpretations is able to succeed without
employing the equivalence oracle, which is essential to the other approach.

Less directly, our work is also related to various contributions on learnability
of different types of formal structures from data, e.g.: first-order theories from
facts [9], finite automata descriptions from observations [13], logic programs
from interpretations [5,6]. In the area of DLs, a few learning scenarios have
been formally addressed, concerned largely with learning concept descriptions
via different learning operators [14,15,16,17] and applications of formal concept
analysis techniques to automated generation of DL axioms from data [18,19].

7 Conclusions and Outlook

In this paper, we have delivered initial results on finite learnability of DL TBoxes
from interpretations. We believe that this direction shows a lot of promise in
establishing formal foundations for the task of ontology learning from data. Some
immediate problems that are left open with this work concern finite learnability
of ELlhs TBoxes in an unsupervised setting, and possibly of other lightweight
fragments of DLs. Another set of very interesting research questions should deal,
in our view, with the possibility of formulating alternative conditions on the
learning sets and the corresponding learnability guarantees they would imply in
different DL languages. In particular, some limited use of closed-world operator
over the learning sets might allow to relax the practically restrictive admissibility
condition. Finally, the development of practical learning algorithms, possibly
building on existing inductive logic programming methods, is an obvious area to
welcome further research efforts.
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