
Structure Learning of Probabilistic Logic
Programs by MapReduce

Fabrizio Riguzzi1, Elena Bellodi2, Riccardo Zese2, Giuseppe Cota2, and
Evelina Lamma2

1 Dipartimento di Matematica e Informatica – University of Ferrara
Via Saragat 1, I-44122, Ferrara, Italy

2 Dipartimento di Ingegneria – University of Ferrara
Via Saragat 1, I-44122, Ferrara, Italy

[fabrizio.riguzzi,elena.bellodi,riccardo.zese,

giuseppe.cota,evelina.lamma]@unife.it

Abstract. Probabilistic Logic Programming has been shown to be a
useful language for Inductive Logic Programming: for instance, the sys-
tem SLIPCOVER learns high quality theories in a variety of domains.
However, the computational cost of SLIPCOVER is sometimes expen-
sive, with a running time of the order of hours. In this paper we present
the system SEMPRE for “Structure lEarning by MaPREduce”, that im-
plements SLIPCOVER by applying a particularly simple MapReduce
strategy, directly implemented with the Message Passing Interface. SEM-
PRE has been tested on various domains and shown to effectively reduce
SLIPCOVER running time, even if the speedup is often sublinear.

Keywords: Probabilistic Logic Programming, Parameter Learning, Structure
Learning, MapReduce

1 Introduction

Probabilistic Logic Programming (PLP) represents an interesting language for
Inductive Logic Programming (ILP), because it allows algorithms to better deal
with uncertain information. The distribution semantics [23] is an approach to
PLP that is particularly attractive for its intuitiveness and for the interpretabil-
ity of the programs. Various algorithms have been proposed for learning the pa-
rameters of probabilistic logic programs under the distribution semantics, such as
PRISM [24], ProbLog2 [11] and EMBLEM [3]. Recently, systems for learning the
structure of these programs have started to appear. Among these, SLIPCASE [2]
performs a beam search in the space of possible theories using the log-likelihood
(LL) of the examples as the heuristics while SLIPCOVER [4] performs a beam
search in the space of clauses using LL as the heuristics again.

These systems demonstrated the ability to learn good quality solutions in a
variety of domains [4] but are usually costly, often taking some hours to complete
on datasets of the order of MBs. However, we are experiencing a rapid growth in

the size of the datasets as testified by the Big Data movement. In order to deal
with Big Data, it is fundamental to reduce learning times by exploiting modern
computing infrastructures such as clusters and clouds.

MapReduce [10] is an approach for exploiting such infrastructures that dis-
tributes the work among a pool of mapper and reducer worker nodes. The com-
putation is performed by dividing the input among mappers, each taking a set
of units of information and returning a set of (key, value) pairs. These sets are
then given to reducers in the form of pairs (key, list of values) and the reducers
compute an aggregate of the values returning a set of (key’, aggregated value)
couples that represents the output of the task.

In this paper, we propose the system SEMPRE for “Structure lEarning by
MaPREduce” that represents a MapReduce implementation of SLIPCOVER.
We preferred to parallelize SLIPCOVER over SLIPCASE since it has been shown
to give much better results in [4].

MapReduce can be realized using various frameworks, such as Hadoop or [6]
that is specifically tailored towards Prolog. However, we decided to avoid using
a framework and implement the MapReduce strategy of SEMPRE directly using
a Message Passing Interface (MPI): in fact, our mapper workers keep in memory
some data structures across MapReduce iteration and the reduce strategy is
particularly simple, being realized by a single reducer receiving the output from
all mapper jobs.

We experimentally evaluated SEMPRE by running it on various datasets
using 1, 8, 16 and 32 nodes. The results show that SEMPRE significantly reduces
SLIPCOVER running time, even if the speedup is often less than linear because
of a (sometimes) relevant overhead.

The paper is organized as follows. Section 2 summarises PLP under the dis-
tribution semantics. Section 3 describes EMBLEM and SLIPCOVER algorithms
for parameter and structure learning of probabilistic logic programs. Section 4
describes EMBLEMMR, the MapReduce version of EMBLEM. Section 5 dis-
cusses SEMPRE. Section 6 presents the experiments while Section 7 concludes
the paper.

2 Probabilistic Logic Programming

We introduce PLP focusing on the distribution semantics. We use Logic Pro-
grams with Annotated Disjunctions (LPADs) as the language for their general
syntax and we do not allow function symbols; for the treatment of function
symbols see [20].

LPADs [27] consist of a finite set of annotated disjunctive clauses Ci of the
form hi1 : Πi1; . . . ;hini : Πini : −bi1, . . . , bimi . Here, bi1, . . . , bimi are logical
literals which form the body of Ci, denoted by body(Ci), while hi1, . . . hini are
logical atoms and {Πi1, . . . ,Πini

} are real numbers in the interval [0, 1] such
that

∑ni

k=1Πik ≤ 1. Note that if ni = 1 and Πi1 = 1 the clause corresponds to a
non-disjunctive clause. Otherwise, if

∑ni

k=1Πik < 1, the head of the annotated
disjunctive clause implicitly contains an extra atom null that does not appear

2

in the body of any clause and whose annotation is 1−
∑ni

k=1Πik. The grounding
of an LPAD T is denoted by ground(T).

An atomic choice is a triple (Ci, θj , k) where Ci ∈ T , θj is a substitution
that grounds Ci and k ∈ {1, . . . , ni} identifies a head atom of Ci. It corresponds
to an assignment Xij = k, where Xij is a multi-valued random variable which
correspond to Ciθj . A set of atomic choices κ is consistent if only one head is
selected from a ground clause. In this case it is called composite choice. The
probability P (κ) of a composite choice κ is computed by multiplying the proba-
bilities of the individual atomic choices, i.e. P (κ) =

∏
(Ci,θj ,k)∈κΠik. A selection

σ is a composite choice that, for each clause Ciθj in ground(T), contains an
atomic choice (Ci, θj , k). It identifies a world wσ of T , i.e. a normal logic pro-
gram defined as wσ = {(hik ← body(Ci))θj |(Ci, θj , k) ∈ σ}. Since selections are
composite choices, the probability of the worlds is P (wσ) = P (σ). We denote by
ST the set of all selections and by WT the set of all worlds of a program T . A
composite choice κ identifies a set of worlds ωκ = {wσ|σ ∈ ST , σ ⊇ κ}. We define
the set of worlds identified by a set of composite choices K as ωK =

⋃
κ∈K ωκ.

We consider only sound LPADs, where each possible world has a total well-
founded model, so wσ |= Q means a query Q is true in the well-founded model
of the program wσ. The probability of a query Q given a world w is P (Q|w) = 1
if w |= Q and 0 otherwise. The probability of Q is then:

P (Q) =
∑
w∈WT

P (Q,w) =
∑
w∈WT

P (Q|w)P (w) =
∑

w∈WT :w|=Q

P (w) (1)

Example 1. The following LPAD T models the fact that if somebody has the flu
and the climate is cold, there is the possibility that an epidemic or a pandemic
arises:

C1 = epidemic : 0.6; pandemic : 0.3 : −flu(X), cold.
C2 = cold : 0.7.
C3 = flu(david).
C4 = flu(robert).

T has 18 instances, the query Q = epidemic is true in 5 of them and its prob-
ability is P (epidemic) = 0.6 · 0.6 · 0.7 + 0.6 · 0.3 · 0.7 + 0.6 · 0.1 · 0.7 + 0.3 · 0.6 ·
0.7 + 0.1 · 0.6 · 0.7 = 0.588.

Since in practice enumerating all the worlds where Q is true is unfeasible, infer-
ence algorithms find a covering set of explanations for Q, i.e. a set of composite
choices K such that Q is true in a world wσ iff wσ ∈ ωK . For Example 1, a cover-
ing set of explanations is {{(C1, {X/david}, 1), (C2, ∅, 1)}, {(C1, {X/robert}, 1),
(C2, ∅, 1)}} where non-disjunctive clauses are omitted.

From the set K, the following Boolean function is built:

fK(X) =
∨
κ∈K

∧
(Ci,θj ,k)∈κ

(Xij = k) (2)

where X = {Xij |Ci is a clause and θj is a grounding substitution of Ci} are
multi-valued random variables. The domain of Xij is 1, . . . , ni and its probability

3

distribution is given by P (Xij = k) = Πik. The problem of computing P (Q) can
be solved by computing the probability that fK(X) takes on value true. For
Example 1, (2) is given by

fK(X) = (X11 ∧X21) ∨ (X12 ∧X21) (3)

where X11 corresponds to (C1, {X/david}), X12 corresponds to (C1, {X/robert})
and X21 corresponds to (C2, ∅).

If we associate a multi-valued variable Xij , corresponding to the ground
clause Ciθj , having ni values, with ni − 1 Boolean variables Xij1, . . . , Xijni−1,
the equation Xij = k for k = 1, . . . ni − 1 corresponds with the conjunction
Xij1∧ . . .∧Xijk−1∧Xijk, while the equation Xij = ni with Xij1∧ . . .∧Xijni−1.
Following this approach, which provides good performance [21], fK(X) in (2) can
be translated into a function of Boolean random variables. For Example 1, X11 =
1 is represented as X111 and X11 = 2 as X111∧X112. Let us call f ′K(X′) the result
of replacing multi-valued random variables with Boolean variables in fK(X).
The probability distribution of the Boolean random variables Xijk is computed
from that of multi-valued variables as πi1 = Πi1, . . . , πik = Πik∏k−1

j=1
(1−πij)

up to

k = ni− 1, where πik is the probability that Xijk is true. With this distribution
the probability that f ′K(X′) is true is the same as fK(X) = P (Q). For Example 1,
f ′K(X′) is given by

f ′K(X′) = (X111 ∧X211) ∨ (X121 ∧X211) (4)

Computing the probability that f ′K(X′) is true is a sum-of-products problem
and it was shown to be #P-hard [16]. Knowledge compilation, that was found to
give good results in practice [8], consists of translating f ′K(X′) to a target lan-
guage that allows answering queries in polynomial time, such as Binary Decision
Diagrams (BDD). From a BDD we can compute the probability of the query
with a dynamic programming algorithm that is linear in its size [9]. Algorithms
that adopt such an approach for inference include [17–19].

A BDD for a function of Boolean variables is a rooted graph that has one
level for each Boolean variable. A node n in a BDD has two children: one corre-
sponding to the 1 value of the variable associated with n, and one corresponding
to the 0 value of the variable. The leaves store either 0 or 1.

BDDs can be built in practice by highly efficient software packages such as
CUDD3. A BDD for function (4) is shown in Figure 1.

3 Learning LPADs

BDDs are employed to efficiently perform parameter learning of LPADs by the
system EMBLEM [3], based on an Expectation Maximization (EM) algorithm
(see Algorithm 1). It takes as input a set of interpretations I, i.e., sets of ground
facts describing a portion of the domain, and the theory T for which we want to

3 Available at http://vlsi.colorado.edu/~fabio/CUDD/

4

X111
�� ���� ��n1 J

:

X121
�� ���� ��n2

�
�
�
�

X211
�� ���� ��n3 [U

O L
1 0

Fig. 1. BDD for function (4). The dashed branch is the one who goes to the child
corresponding with the 0 value of the variable.

learn the parameters. It is targeted at discriminative learning, since the user has
to indicate which predicate(s) of the domain is/are target, the one(s) for which
we are interested in good predictions. The interpretations must contain also
negative facts for target predicates. All ground atoms for the target predicates
(E) will represent the positive and negative examples (queries) for which BDDs
are built, encoding the disjunction of their explanations.

Algorithm 1. Function EMBLEM

1: function EMBLEM(I, T, ε,δ)
2: Identify examples E
3: Build BDDs for the examples E using T and I
4: LL = −∞
5: repeat
6: LL0 = LL
7: LL = Expectation(BDDs)
8: Maximization
9: until LL− LL0 < ε ∨ LL− LL0 < −LL · δ

10: return LL, π
11: end function

After building the BDDs, EMBLEM maximizes the LL for the positive and
negative target examples with an EM cycle, until it has reached a local maxi-
mum. The E-step computes the expectations of the latent variables directly over
BDDs and returns the LL of the data that is used in the stopping criterion. The
expected counts are then used in the M-step, which updates the parameters π
for all clauses for the next EM iteration by relative frequency.

SLIPCOVER [4] (see Algorithm 2) learns the structure of probabilistic logic
programs with a two-phase search strategy: (1) beam search in the space of
clauses in order to find a set of promising clauses and (2) greedy search in the
space of theories. In the first phase SLIPCOVER performs clause search for
each target predicate separately. The beam for each target predicate is initial-
ized (Function InitialBeams) with a number of bottom clauses built as in
Progol [15]. Then SLIPCOVER generates refinements of the best clause in the
beam and evaluates them through LL by invoking EMBLEM. Each clause is
then inserted in the new beam of promising clauses and in the sets of target

5

and background clauses ordered according to the LL. This is repeated until the
original beam becomes empty. The whole process is repeated at most NI steps.

The search in the space of theories starts from an empty theory which is
iteratively extended with one target clause at a time from those generated in
the previous beam search. The algorithm starts with an empty theory and then
iteratively adds a new clause to the theory, runs EMBLEM to compute the
corresponding LL and checks whether to keep the clause in the theory or not. If
the LL of the new theory decreases, SLIPCOVER removes form the theory the
last inserted clause before selecting the new clause to add.

Finally, background clauses, the ones with a non-target predicate in the head,
are added en bloc to the theory so built, which is the best theory for target
predicates. A further parameter optimization step is executed with EMBLEM
and clauses that are never involved in a target predicate goal derivation are
removed.

Algorithm 2. Function SLIPCOVER

1: function SLIPCOVER(I,NInt,NS ,NA,NI ,NV ,NB,NTC ,NBC , ε, δ)
2: IBs =InitialBeams(I,NInt,NS ,NA) . Clause search
3: TC ← []
4: BC ← []
5: for all (PredSpec,Beam) ∈ IBs do
6: Steps ← 1
7: NewBeam ← []
8: repeat
9: while Beam is not empty do

10: Remove the first couple ((Cl,Literals),LL) from Beam . Remove the first clause
11: Refs ←ClauseRefinements((Cl,Literals),NV) . Find all refinements Refs of

(Cl,Literals) with at most NV variables
12: for all (Cl′,Literals′) ∈ Refs do
13: (LL′′, {Cl′′})←EMBLEM(I, {Cl′}, ε, δ)
14: NewBeam ←Insert((Cl′′,Literals′),LL′′,NewBeam,NB)
15: if Cl′′ is range restricted then
16: if Cl′′ has a target predicate in the head then
17: TC ←Insert((Cl′′,Literals′),LL′′,TC ,NTC)
18: else
19: BC ←Insert((Cl′′,Literals′),LL′′,BC ,NBC)
20: end if
21: end if
22: end for
23: end while
24: Beam ← NewBeam
25: Steps ← Steps + 1
26: until Steps > NI
27: end for
28: Th ← ∅, ThLL← −∞ . Theory search
29: repeat
30: Remove the first couple (Cl, LL) from TC
31: (LL′,Th′)←EMBLEM(I,Th ∪ {Cl}, ε, δ)
32: if LL′ > ThLL then
33: Th ← Th′, ThLL← LL′

34: end if
35: until TC is empty

36: Th ← Th
⋃

(Cl,LL)∈BC
{Cl}

37: (LL,Th)←EMBLEM(I,Th, D,NEM , ε, δ)
38: return Th
39: end function

6

4 Distributed Parameter Learning

In order to parallelize structure learning, first a MapReduce version of EM-
BLEM called EMBLEMMR has been developed, where the Expectation step is
performed in parallel following the approach proposed in [5] for applying MapRe-
duce to the EM algorithm.

In particular, EMBLEMMR (see Algorithm 3) creates n workers indexed from
1 to n. Worker 1 is the “master” and is in charge of splitting work among
the “slaves” (the other n − 1 workers). The Map function is performed by all
processes; the Reduce function and the Maximization step are performed by the
master (also referred to as the “reducer”).

During the Map phase, the input interpretations I and the input theory
T whose parameters are to be learned are replicated among all workers, while
the examples E are evenly divided into n subsets E1, . . . , En. When splitting
examples, E1 is handled by the master, while E2, . . . , En are sent to the slaves
(also referred to as “mappers”). The m-th subset is sent to mapper m that
builds the BDDs for the examples belonging to it. The assignment of subsets of
examples to different mappers is possible because each of them stored in main
memory I and T and because each example and thus each BDD is independent
of the others, allowing one to divide and treat them separately. After that, all
the mappers stay active keeping the BDDs in memory, that could not be done
with a standard MapReduce framework.

During the learning phase (EM cycle), the Expectation step is executed in
parallel by sending the current values of the parameters to each mapper m,
which computes the expectations for each of its examples. By keeping the BDDs
in memory, the mappers only need to receive the parameters’ updated values
to accomplish their task. Then, during the Reduce phase, the expectations are
aggregated and sent to the reducer, that simply sums up the values obtaining
the expected counts. Finally, the Maximization step is performed serially.

This parallelization strategy is implemented using the Message Passing In-
terface (MPI): we preferred it over a standard MapReduce framework (such as
Hadoop) because we wanted to customize the parallelization strategy to better
suit our needs: our mappers have side-effects because they have to retain in main
memory all the BDDs through all iterations, so they are not purely functional,
as should be required by standard MapReduce frameworks.

5 Distributed Structure Learning

SEMPRE (see Algorithm 4) parallelizes three operations of the structure learning
algorithm SLIPCOVER by employing n workers, one master and n − 1 slaves.
All the workers initially receive all the input data.

The first operation is the scoring of the clause refinements: when the revi-
sions Refs for a clause are generated [line 12], the master process splits them
evenly into n subsets Refs1, . . . ,Refsn and assigns Refs2, ...,Refsn to the slaves.
The subset Refs1 is handled by the master. Then, SEMPRE enters the Map

7

Algorithm 3. Function EMBLEMMR

1: function EMBLEMMR (I, T, n, ε,δ)
2: if MASTER then
3: Identify examples E
4: Split examples E into n subsets E1, . . . , En

5: Send Em to each worker m, 2 ≤ m ≤ n
6: Build BDDs1 for examples E1 using T and I
7: LL = −∞
8: repeat
9: LL0 = LL

10: Send the parameters π to each worker m, 2 ≤ m ≤ n
11: LL = Expectation(BDDs1)
12: Collect LLm and the expectations from each worker m, 2 ≤ m ≤ n
13: Update LL and the expectations
14: Maximization
15: until LL− LL0 < ε ∨ LL− LL0 < −LL · δ
16: return LL, π
17: else . the j-th slave
18: Receive Ej from master
19: Build BDDsj for examples Ej using T and I
20: LL = −∞
21: repeat
22: Receive the parameters π from master
23: LLj = Expectation(BDDsj)
24: Send LLj and the expectations to master
25: until LL− LL0 < ε ∨ LL− LL0 < −LL · δ
26: end if
27: end function

phase [lines 20-30], when each worker is listening for requests to score a set of
refinements and will return the set of scored refinements with their log-likelihood
(LL). Scoring is performed using (serial) EMBLEM which is run over a theory
containing only one refinement at a time: since the BDDs built for clauses are
usually small, using EMBLEMMR would imply a too large overhead.

Once the master has received all sets of scored refinements from the workers,
it enters the Reduce phase [lines 32-35], where it updates the beam of promising
clauses (NewBeam) and the sets of target and background clauses (TC and BC
respectively): the scored refinements are inserted in order of LL into these lists.
NTC (NBC) is the maximum size for TC (BC).

The second parallelized operation is parameter learning for the theories. In
this phase [lines 45-52], each clause from TC is added to the theory, which is
initially empty and then contains all the clauses that improved the its LL (search
in the space of theories). In this case, the BDDs that are being built can be quite
complex since the theory is incrementally built, so EMBLEMMR is used.

The third parallelized operation is the final parameter optimization for the
theory including also the background clauses [lines 53-54]. All the background
clauses are added to the theory previously learned, then the parameters of the
theory are learned by means of EMBLEMMR because the BDDs can be large.

6 Experiments

SEMPRE was implemented in Yap Prolog [22] using the lammpi library for
interfacing Prolog with the underlying MPI framework. SEMPRE was tested on

8

the following seven real world datasets: Hepatitis [12], Mutagenesis [26], UWCSE
[13], Carcinogenesis [25], IMDB [14], HIV [1] and WebKB [7]. All experiments
were performed on GNU/Linux machines with an Intel Xeon Haswell E5-2630
v3 (2.40GHz) CPU with 8GB of memory allocated to the job.

Table 1 shows the wall time in seconds taken by SEMPRE to perform learning
averaged over the folds (ten for Mutagenesis, four for WebKB and five for all
the others). The experiments were performed with 1, 8, 16 or 32 workers. Figure
2 shows the speedup obtained as a function of the number of workers. The
speedup for n workers is the fraction of the time with 1 worker over the time for
n workers. Ideally, one wants to achieve a linear speedup. The speedup is always
larger than 1 and grows with the number of workers achieving the best with 32
workers, except for HIV and IMDB, where there is a slight decrease for 16 and
32 workers due to the overhead caused by the distribution itself; however, these
two datasets were the smallest ones and less in need of a parallel solution.

We have evaluated SEMPRE speedup during both distributed parameter and
structure learning and seen that it is remarkable in both phases; moreover, we
have noted that it spends most time in the beam search of clause refinements:
for example, for UWCSE the time for clause search is around 94% of the total
time, while for WebKB it is around 96%. The average time to handle each
refinement is small, around 23ms for UWCSE and 80ms for WebKB. Therefore,
the parallelization decisions taken seem justified: since the refinement handling
time is small, it does not make sense to perform distributed parameter learning
for clause refinements, while it is more reasonable to distribute the refinements
to workers. These results show that SEMPRE is able to exploit the availability
of processors in most cases.

1 8 16 32

Hepatitis 19,867 4,246 2,392 1,269

Mutagenesis 14,784 2,887 2,587 1,579

UWCSE 12,758 5,401 3,152 1,899

Carcinogenesis 170 23 18 16

IMDB 481 104 113 177

HIV 508 118 136 295

WebKB 2,441 486 322 256

Table 1. SEMPRE execution time (in seconds) as the number of slaves varies.

7 Conclusions

The paper presents the algorithm SEMPRE for learning the structure of proba-
bilistic logic programs under the distribution semantics. SEMPRE is a MapRe-
duce implementation of SLIPCOVER, exploiting modern computing infrastruc-
tures for performing learning in parallel. SEMPRE has been tested on a number

9

Nodes
0 5 10 15 20 25 30 35

S
pe

ed
up

0

2

4

6

8

10

12

14

16

Hepatitis
Mutagenesis
UWCSE
Carcinogenesis
IMDB
HIV
WebKB

Fig. 2. SEMPRE Speedup referred to Table 1.

of domains with an increasing number of nodes and the results show that paral-
lelization is indeed effective at reducing the running time, even if in some cases
the overhead may be significant.

References

1. Beerenwinkel, N., Rahnenführer, J., Däumer, M., Hoffmann, D., Kaiser, R., Selbig,
J., Lengauer, T.: Learning multiple evolutionary pathways from cross-sectional
data. J. Comp. Biol. 12, 584–598 (2005)

2. Bellodi, E., Riguzzi, F.: Learning the structure of probabilistic logic programs. In:
Muggleton, S., Tamaddoni-Nezhad, A., Lisi, F. (eds.) ILP 2012. LNCS, vol. 7207,
pp. 61–75. Springer Berlin Heidelberg (2012)

3. Bellodi, E., Riguzzi, F.: Expectation Maximization over Binary Decision Diagrams
for probabilistic logic programs. Intell. Data Anal. 17(2), 343–363 (2013)

4. Bellodi, E., Riguzzi, F.: Structure learning of probabilistic logic programs by
searching the clause space. Theor. Pract. Log. Prog. 15(2), 169–212 (2015)

5. Chu, C., Kim, S.K., Lin, Y.A., Yu, Y., Bradski, G., Ng, A.Y., Olukotun, K.: Map-
reduce for machine learning on multicore. In: Schölkopf, B., Platt, J.C., Hoffman,
T. (eds.) 20th Annual Conference on Neural Information Processing Systems. pp.
281–288. MIT Press (2006)

6. Côrte-Real, J., Dutra, I., Rocha, R.: Prolog programming with a map-reduce par-
allel construct. In: 15th Symposium on Principles and Practice of Declarative Pro-
gramming. pp. 285–296. ACM (2013)

7. Craven, M., Slattery, S.: Relational learning with statistical predicate invention:
Better models for hypertext. Mach. Learn. 43(1-2), 97–119 (2001)

8. Darwiche, A., Marquis, P.: A knowledge compilation map. J. Artif. Intell. Res. 17,
229–264 (2002)

9. De Raedt, L., Kimmig, A., Toivonen, H.: ProbLog: A probabilistic Prolog and its
application in link discovery. In: 20th International Joint Conference on Artificial
Intelligence. vol. 7, pp. 2462–2467. AAAI Press (2007)

10

10. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

11. Fierens, D., den Broeck, G.V., Renkens, J., Shterionov, D.S., Gutmann, B., Thon,
I., Janssens, G., De Raedt, L.: Inference and learning in probabilistic logic programs
using weighted boolean formulas. Theor. Pract. Log. Prog. 15(3), 358–401 (2015)

12. Khosravi, H., Schulte, O., Hu, J., Gao, T.: Learning compact Markov logic Net-
works with decision trees. Mach. Learn. 89(3), 257–277 (2012)

13. Kok, S., Domingos, P.: Learning the structure of Markov Logic Networks. In: 22nd
international conference on Machine learning. pp. 441–448. ACM (2005)

14. Mihalkova, L., Mooney, R.J.: Bottom-up learning of markov logic network struc-
ture. In: 24th International Conference on Machine Learning. pp. 625–632. ACM
(2007)

15. Muggleton, S.: Inverse entailment and Progol. New Generat. Comput. 13, 245–286
(1995)

16. Rauzy, A., Châtelet, E., Dutuit, Y., Bérenguer, C.: A practical comparison of
methods to assess sum-of-products. Reliab. Eng. Syst. Safe 79(1), 33–42 (January
2003)

17. Riguzzi, F.: Speeding up inference for probabilistic logic programs. Comput. J.
57(3), 347–363 (2014)

18. Riguzzi, F., Swift, T.: Tabling and Answer Subsumption for Reasoning on Logic
Programs with Annotated Disjunctions. In: 26th International Conference on Logic
Programming. LIPIcs, vol. 7, pp. 162–171 (2010)

19. Riguzzi, F., Swift, T.: The PITA system: Tabling and answer subsumption for
reasoning under uncertainty. Theor. Pract. Log. Prog. 11(4–5), 433–449 (2011)

20. Riguzzi, F., Swift, T.: Well-definedness and efficient inference for probabilistic logic
programming under the distribution semantics. Theor. Pract. Log. Prog. 13(2),
279–302 (March 2013)

21. Sang, T., Beame, P., Kautz, H.A.: Performing bayesian inference by weighted
model counting. In: 20th National Conference on Artificial Intelligence. pp. 475–482
(2005)

22. Santos Costa, V., Rocha, R., Damas, L.: The YAP Prolog system. Theor. Pract.
Log. Prog. 12(1-2), 5–34 (2012)

23. Sato, T.: A statistical learning method for logic programs with distribution seman-
tics. In: 12th International Conference on Logic Programming. pp. 715–729. MIT
Press (1995)

24. Sato, T., Kameya, Y.: Parameter learning of logic programs for symbolic-statistical
modeling. J. Artif. Intell. Res. 15, 391–454 (2001)

25. Srinivasan, A., King, R.D., Muggleton, S., Sternberg, M.J.E.: Carcinogenesis pre-
dictions using ILP. In: Lavrac, N., Dzeroski, S. (eds.) ILP 1997. LNCS, vol. 1297,
pp. 273–287. Springer Berlin Heidelberg (1997)

26. Srinivasan, A., Muggleton, S., Sternberg, M.J.E., King, R.D.: Theories for muta-
genicity: A study in first-order and feature-based induction. Artif. Intell. 85(1-2),
277–299 (1996)

27. Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic Programs With Annotated
Disjunctions. In: ICLP 2004. LNCS, vol. 3131, pp. 195–209. Springer Berlin Hei-
delberg (2004)

11

Algorithm 4. Function SEMPRE

1: function SEMPRE(I, n,NInt,NS ,NA,NI ,NV ,NB,NTC ,NBC , ε, δ)
2: IBs =InitialBeams(I,NInt,NS ,NA) . Clause search
3: TC ← []
4: BC ← []
5: for all (PredSpec,Beam) ∈ IBs do
6: Steps ← 1
7: NewBeam ← []
8: repeat
9: while Beam is not empty do

10: if MASTER then
11: Remove the first couple ((Cl,Literals),LL) from Beam . Remove the first

clause
12: Refs ←ClauseRefinements((Cl,Literals),NV) . Find all refinements Refs of

(Cl,Literals) with at most NV variables
13: Split evenly Refs into n subsets Refs1, . . . ,Refsn
14: for m = 2 to n do
15: Send Refsm to worker m
16: end for
17: else . the j-th slave
18: Receive Refsj from master
19: end if
20: for all (Cl′,Literals′) ∈ Refsj do

21: (LL′′, {Cl′′})←EMBLEM(I, {Cl′}, ε, δ)
22: NewBeam ←Insert((Cl′′,Literals′),LL′′,NewBeam,NB)
23: if Cl′′ is range restricted then
24: if Cl′′ has a target predicate in the head then
25: TC ←Insert((Cl′′,Literals′),LL′′,TC ,NTC)
26: else
27: BC ←Insert((Cl′′,Literals′),LL′′,BC ,NBC)
28: end if
29: end if
30: end for
31: if MASTER then
32: for m = 2 to n do
33: Collect the set {(LL′′, {Cl′′})|∀(Cl′,Literals) ∈ Refsm} from worker m
34: Update NewBeam,TC ,BC
35: end for
36: else . the j-th slave
37: Send the set {(LL′′, {Cl′′})|∀(Cl′,Literals) ∈ Refsj} to master
38: end if
39: end while
40: Beam ← NewBeam
41: Steps ← Steps + 1
42: until Steps > NI
43: end for
44: if MASTER then
45: Th ← ∅, ThLL← −∞ . Theory search
46: repeat
47: Remove the first couple (Cl, LL) from TC

48: (LL′,Th′)←EMBLEMMR (I,Th ∪ {Cl}, n, ε, δ)
49: if LL′ > ThLL then
50: Th ← Th′, ThLL← LL′

51: end if
52: until TC is empty

53: Th ← Th
⋃

(Cl,LL)∈BC
{Cl}

54: (LL,Th)←EMBLEMMR (I,Th, n, ε, δ)
55: return Th
56: end if
57: end function

12

